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Abstract

Objectives: Several formulations have been proposed in order to model human
growth from birth to maturity. They are usually based on “ad hoc” heuristic
assumptions. In the present contribution we adopt, as an alternative, a completely
general (interdisciplinary) approach, based on the formalism of the
Phenomenological Universalities (PUN).

Methods: The main PUN class investigated to date, i.e. UN, can only account for the
overall growth pattern. For a realistic description it is necessary to add to it one or
more “spurts”, as expected on biological grounds, due to the stimulation of growth
and sex hormones.

Results: A new PUN class (UN+ FM) is generated and shown to be able to provide
excellent agreement with standard auxological datasets. The accuracy of the fitting
and reliability of the model suggest applications both at the diagnostic and
therapeutic level.

Conclusions: The developed formalism can be suitably related to the biological
description of bone plate growth under selective hormonal stimulation on the bone
epiphysis; i.e., the additional increase of stature is the “macroscopic” response to a
well defined biological signal.
Background
Growth is an extremely complex and non-linear biological process, driven by hormo-

nal mechanisms and characterized by an intrinsic variability reflecting environmental

and genetic influences and individual adaptive responses.

Individual human growth has been widely investigated [1-3]. In his brief history of

human growth dynamics, Wales [4] reports that periodic accelerations and decelera-

tions in growth had already been observed in 1777 by Montbeillard in his child, while

seasonal and diurnal changes were detected by various authors during the 1960s and

in later years [5]. More recently, growth variability has been analyzed in detail leading

to the concept of “saltatory growth” [6]. The occurrence of “spurts” or discontinuities

in longitudinal growth is now known to occur over small time intervals, and may

therefore be detected only by using appropriate time scales.

When observations are made over infrequently collected data in “longitudinal” studies,

or when growth charts are produced as “transversal” datasets, combining large numbers

of data from a given homogeneous population (e.g. in terms of geographical area and of

temporal range), growth variability is largely missed. Nevertheless the median curve from

a growth chart usually exhibits spurts at mid-childhood (around 6–7 yr in both sexes)
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and at puberty (around 12 yr for females and 14 yr for males). Growth charts are very

helpful as reference tools for pediatricians, in order to monitor individual growth

and provide therapeutic interventions when children’s height is well below median

values.

Similarly, animal growth has been shown to follow irregular “saltatory” patterns

[7], which again are barely observable in studies based on infrequently collected

data over large populations. In fact, at a low resolution time-scale, most animal

species exhibit a very regular mass (m, or weight) growth pattern, characterized by

an initial exponential growth and a progressive decrease of the growth rate a(t),

until a final saturation value, the carrying capacity M, is reached. Such “universal”

behaviour has been analyzed by West et al. [8,9], who showed that by renormaliz-

ing the time by the effective growth rate and considering as dependent variable the

ratio (m/M)0.25, most species share the same growth curve. West and collaborators

have also investigated the dependence of the exponent value on the fractal nature

of tissue perfusion, and the relation between the carrying capacity and some basic

biological parameters, such as the cellular mass and metabolic rate of the species.

For related literature, see [10-13].

For what concern the biological mechanisms underlying human longitudinal

growth, a detailed explanation is still missing, and will probably entail multifac-

torial contributions to the main effect of selective hormonal stimulation on bone

epiphyses. Basically, bone epiphyses are the regions where chondrocyte prolifera-

tion in the growth plate occurs; these cells can be seen as “stem-like cells”,

whose growth is stimulated, at some specific point, by specific hormones [14].

The most important of these hormones, i.e. the growth hormone GH, is secreted

by the adenohypophysis and is controlled by the hypothalamus by means of vari-

ous GH-stimulating mediators, e.g. GHRH (Growth Hormone Releasing Hor-

mone) and GHR-IH (Growth Hormone Release-Inhibiting Hormone). Sleep,

physical training, traumata and nutritional conditions are known to stimulate se-

cretion of GH.

The GH effect on bone growth is known to be mediated by specific receptors,

such as the IGF-I (Insulin-like growth factor) receptor [15]. Sex hormones (SH,

mainly estrogens, which in both boys and girls stimulate GH and IGF-I secretion)

are also known to affect the endochondrial bones. Initially they induce a rapid

growth in cartilage, producing the growth peak, then cartilages are calcified and

height growth is blocked [16]. Besides constitutional primitive and/or familial

causes, any impairment in the production/effectiveness of such hormones may be

responsible for pathological short stature [17,18] (and can be counteracted with

hormonal therapies, see Ranke et al. [19]). It would therefore be valuable to obtain

direct indications relating the growth “spurts” and the biological effects of hor-

mones in order to derive therapeutic guidelines. Such hormonal influence on the

basic mechanisms of growth is fully in agreement with West’s assumption that the

saturation value (or carrying capacity) is related to the cellular metabolic rate.

With regard to human growth description, many models have been proposed to date,

mainly based on heuristic assumptions. A number of mathematical functions have been

proposed, starting from the linear-logarithmic model [20,21] and the first exponent

function model [22]. The logistic model was subsequently applied to human growth by
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Ozaki [23] and by Nelder [24]. The Gompertz function [25] was used to describe the

height of 24 male and 24 female subjects by Deming [26]. In order to obtain a more real-

istic description, Thissen et al. [27] derived the double logistic function and, for a higher

fitting accuracy, Bock and Thissen [28] proposed the triple logistic function. Similarly,

the Jolicoeur model uses three terms [29], while Preece and Baines only use two [30],

with a total of 5 free parameters. For a review, see [31,32].

The goal of the present paper is to propose an alternative method for the fitting and

modelling of human growth charts and individual (longitudinal) growth curves, based

on the formalism of the Phenomenological Universalities (PUN). The PUN approach

was inspired by casual observation of striking similarities between growth curves (and

other phenomenologies) in different and independent fields and contexts, such as in

Elastodynamics, Physics, Biology and Economics. It is explained in some detail in the

next Section. In the succeeding section the problem of the exogenous vs. endogenous

nature of the spurts is discussed and a specific formalism for their treatment is pro-

posed. In the final section, several datasets of great auxological relevance are analysed

in order to assess the applicability of the proposed approach and the validity and sig-

nificance of the results.

The PUN approach
Given a set of experimental data, the first thing that one may want to do, in order to

extract from it as much information as possible, is to find a suitable fitting function. As

a next step it may be desirable to construct a model out of it. For this purpose one

should restrict one’s attention to the raw data and analyse them independently of the

field of application. Such an unbiased procedure may be provided by the Phenomeno-

logical Universalities (PUN) approach, recently proposed by P.P. Delsanto and colla-

borators [33,34] and applied to a wide range of topics (auxology [35], tumor growth

[36,37], nonlinear elasticity [38], and others [39-41]).

In order to describe the PUN methodology from an applicative point of view, let us

start with the first order nonlinear growth differential equation

dy
dt

¼ a yð Þy; ð1Þ

where y(t) represents the variable of interest (e.g. the height of the children) and a(y)

the (unknown) growth rate. Equivalently, Eq.(1) may be written as

dz
dt

¼ a zð Þ; ð2Þ

where z = 1n(y). To integrate Eq.(1), or Eq.(2), it is necessary to make some assumption

about the rate a, e.g. assuming that the time derivative of the growth rate or acceler-

ation b is given by an expansion in a, i.e.

b ¼
XN
i¼1

cia
i ¼ βaþ γa2 þ ⋅⋅⋅⋅ ð3Þ

E.g. for N = 2 we have, in addition to the linear term βa, also the quadratic term
γa2.
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We call UN the class generated by the solution of the coupled differential equa-

tions (2) or (1) and (3), when in the latter only the first N terms are considered. The

functions y(t) that one obtains for the first UN classes (N = 0, 1, 2) have a very wide

range of applications. In fact:

1. for N = 0, i.e. U0, b = 0; y(t) represents a self-catalytic growth function. By

integrating over the two ODEs, Eq. (3) and Eq. (1), we obtain

y tð Þ ¼ y0exp a0tð Þ; ð4Þ
where a0 = a(t = 0) is the initial growth rate. Here and in the following we normalize

the variable y(t), so that y(0) = 1.

2. for N = 1, i.e. U1, b = βa and

y tð Þ ¼ y0exp a0=β exp βtð Þ−1ð Þ½ �: ð5Þ
Equation (5) represents the Gompertz law [25], which has been extensively used in all

kinds of growth problems for almost two centuries. The parameter β represents a

retardation factor, which may be defined as β ¼ −a0=z∞ , where z∞ is the asymptotic

value of z(t).

3. for N = 2, i.e. U2, b ¼ βaþ γa2 and

y tð Þ ¼ y0 1þ a0γ=β 1−exp βtð Þð Þ½ �−1=γ; ð6Þ
which yields a generalization of West’s law [8,9,42]. Here γ = p − 1, where p is the

growth exponent [33].
Exogenous vs. endogenous growth processes
The formalism of the previous section is perfectly suitable to describe the evolution of an

endogenous system, i.e. one in which all the “seeds” of growth are already present at the ini-

tial time (t=0). There are, however, situations in which the “rules of the game” change, sud-

denly or slowly in a way that was not implicitly foreseeable at the time t=0, possibly as a

consequence of “forces” external to the system: we shall call these processes “exogenous”.

It is easy to find examples of exogenous processes in all scientific fields: e.g., a severe sick-

ness or accident (such as the loss of a limb) during childhood, or the inception

of angiogenesis in oncology, or a change of state in a thermodynamic process, or a

“September 11” for the NYSE or OTC, etc. If the disruption of the system takes

place at a well defined time t1, then the PUN formalism may be applied to both

periods (before and after t1) and the change in the PUN parameters may be used

to characterize quantitatively the variation which has occurred. If the change is

sudden but its precise timing is not known, then t1 may be used as an adjustable

parameter, in order to pinpoint the precise time of the perturbing event.

However, the distinction between exogenous and endogenous processes may be rather

subtle. E.g., in the case of human development we can very well theorize that all the “seeds”

are present in the DNA of the embryonic cells, so that the whole process is, at least impli-

citly, endogenous and a unique PUN curve should describe the entirety of perinatal growth

(i.e. both before and after birth). In fact this turns out to be correct, at least as a first ap-

proximation [43]. Likewise for the growth spurts mentioned in the Background, which

occur both at mid-childhood and at a pre-puberal age due to hormonal stimulation.



Gliozzi et al. Theoretical Biology and Medical Modelling 2012, 9:17 Page 5 of 15
http://www.tbiomed.com/content/9/1/17
A more accurate description of the human growth process can, however, be achieved

by an alternative treatment, in which we superimpose on an overall U1 or U2 model

one or more “mathematical spurts”, modelled as small additional corrections that are

also to be described in the framework of a UN class. The resulting formalism is briefly

described in the following and will be adopted in the remainder of this paper.

Let us then assume that the overall growth curve can be fitted, up to a certain level

of approximation, by Eq. (5). We have restricted our treatment to the class U1 in order

to limit the number of “free” parameters of the model, since the corresponding results

are already quite satisfactory (see next section); the improvements achievable with U2

or U3 would be only marginal. It should be noted that, although in Eq. (5) there are

three parameters, only one (β) should be considered as a “free” parameter, since y0 and

a0 may be directly evaluated from the first few data.

We then superimpose (i.e. we add) on Eq. (5) a small number M (usually one or two)

of “spurts”, each given by

Δym tð Þ ¼ G tm; σm; tð Þy0mexp am
βm

� �
exp βm t−tmð Þð Þ−1½ �

� �
; ð7Þ

where again we have restricted ourselves to the class U1. In Eq. (7) y0m is the amplitude

of the spurt at t = tm, and G(tm, σm, t) is the Gauss cumulative function with average

value tm and standard deviation σm, defined by

G tm; σm; tð Þ ¼ 1ffiffiffiffiffiffi
2π

p ∫t−∞e
− τ−tmð Þ2

2σ2m dτ ð8Þ

A special case of the Gauss cumulative function is the Heaviside function
H tm; tð Þ ¼ G tm; 0;tð Þ ¼ 0 if t ≤ tm;
1 if t > tm:

�
ð9Þ

The corresponding PUN classes will be called (U1 +GM) and (U1 +HM), respect-

ively, with M= 1, 2, . . . being the number of spurts assumed. Obviously, since we are

dealing with a steadily evolving process, results will be better with the former class

(U1 +GM), although the latter may be preferable when it is important to decrease the

number of free parameters. A good compromise may be to adopt a class, which we

shall call (U1 + FM), which is identical to (U1 +GM) except that the a0m parameters for

the spurts are assumed to be equal to the U1 parameter a0. Such an assumption may

easily be justified on biological grounds, since bone cells have their own duplication

time, which is expected to remain the same both under ‘endogenous’ and ‘exogenous’

(i.e. hormonally induced) growth conditions.

As discussed in the Background, two growth spurts are expected in the normal

human development after birth, due to the stimulation of growth (GH) and sex (SH)

hormones. However, as we shall see in the next section, only the latter has a significant

impact on the growth chart morphology. Consequently, for the sake of reducing the

number of model parameters, only the latter will be considered in the analysis of trans-

versal datasets. However, a second spurt will also be included in the analysis of longitu-

dinal datasets (concerning a single individual) when specific GH therapy is performed

(see Figure 1 and Table 1). It should be remarked that there is, of course, also a spurt

in the first year after birth. However, since perinatal growth has already been studied in



Table 1 Fitting parameter and R2 values corresponding to the longitudinal curve shown
in Figure 1a (code IVS3)

U1 U1–H1 U1–F1 U1–F2

ivs3 59.61 57.43 55.10 56.31

y0(cm) 0.11 0.14 0.16 0.13

β0(1/yr) −0.09 −0.14 −0.15 −0.12

tm1(yr) 2.60

y1(cm) 0.01

β1(1/yr) −1.34

a1(1/yr) 12.63

σ1(yr) 0.02

tm2(yr) 14.87 14.63 14.89

y2(cm) 12.45 17.42 15.81

β2(1/yr) −0.11 −0.84 −2.38

σ2(yr) 1.18 0.93

R2 0.991 0.996 0.998 0.999

Figure 1 Height vs. age data from dataset 1, British boys (1965): empty circles. The solid curves
represent the fitting of the data by means of the classes (a) U1, (b) (U1 + F1), respectively. The (U1 +G1)
fitting curve is visually indistinguishable from (U1 + F1), and therefore is not shown separately. The fitting
parameters and R2 values are reported in Table 2.
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[43], we do not consider it here and we restrict our analysis of human growth data to

the time span from one year to maturity.
Results
The formalism of the previous sections has been applied to the analysis of the following

transversal datasets, representing statistical height vs. age (from 1 to 19 years) in large,

well defined populations:

1. the “historical” growth charts published by [3] and based on the London County

Council survey updated to 1965 [45,46]. In this survey a random sample of London

schoolchildren was taken, including approximately 1,000 boys at each year of age;

2. the growth charts of British girls in 1990, recently re-published by Cole [47-49].

All measurements were made between 1978 and 1990 and included a total of over

25,000 individuals;

3. the growth charts of Romano et al. [50], referring to Noonan boys and girls,

based on the results of the National Cooperative Growth Study (which includes a large

number of Noonan children). Noonan syndrome is a genetically-based pathology

whose incidence in the general population is estimated between 1:1,000 and 1:2,500

[51]. It is a clinically heterogeneous disorder predominantly characterized by

dysmorphic facial features, congenital heart disease, proportionate post-natally short

stature and other deformities [52].

Such data are normally used to define a “median” growth curve, which is the one

considered in the following, and the percentiles, which are useful to pediatricians in

order to establish threshold levels for underdevelopment.

Figure 2 reports dataset 1 (British boys) and the corresponding fitting curves, based

on the classes U1 and (U1 + F1); the (U1 +G1) curve coincides visually with the

(U1 + F1) curve and is therefore omitted. It is clear from Figure 2a that the U1 curve is

adequate for predicting the overall growth, but not the “structure”, which is quite con-

spicuous in the observational dataset at about 13 years. Such a structure is easily no-

ticeable in the (U1 + F1) or (U1 +G1) curve (Figure 2b). In fact the quality of the fit in

Figure 2c is truly remarkable, and well supported by the R2 values (see Table 2).

Similar considerations hold also for the dataset 2 (British girls): see Figure 3. The

same conclusions can be drawn, i.e. that U1 can predict only the overall pattern of

growth, while (U1 + F1) also reproduce the “structure” of the curve. The two curves

(U1 +G1) and (U1 + F1) are again almost indistinguishable. Thus the latter is preferable,

since it requires one less parameter.

Figure 4 shows the fitting of dataset 3 (Noonan boys and girls) by the (U1 + F1) PUN

class. The quality of the (U1 + F1) fit is excellent also in the case of Figure 4.

It may be interesting to show (see Figure 5) how the “structure” in Figures 2, 3, 4 ori-

ginates as a result of the spurts, as discussed in the previous Section. Figure 5 shows

how the plots of Figures 2b, 3b and 4b may be decomposed in the U1 fitting curve plus

the “spurts” (which are separately plotted in the lower parts of Figure 5a and b as dot-

ted lines). The two figures refer to “normal” (general population) and Noonan children,

respectively, and consider separately boys and girls in both cases. One can see that both



Figure 2 Height vs. age data from dataset 2, British girls (1990): empty circles. The solid curves
represent the fitting of the data by means of the classes (a) U1, (b) (U1 + F1), respectively. The (U1 +G1)
fitting curve is visually indistinguishable from (U1 + F1), and therefore is not shown separately. The fitting
parameters and R2 values are reported in Table 2.

Gliozzi et al. Theoretical Biology and Medical Modelling 2012, 9:17 Page 8 of 15
http://www.tbiomed.com/content/9/1/17
the pre-spurt U1 growth and the spurt are almost identical for boys and girls (actually

the spurts are larger for the latter). Nevertheless the height at maturity is statistically

lower for normal girls, since for them puberty, hence saturation of the U1 growth and

onset of the spurt, happens on the average almost three years earlier. However, in com-

paring the data for boys and girls it is necessary to recall that the two datasets refer to

different years (1965 vs. 1990), i.e. they are separated by 25 years of socio-economic de-

velopment (and consequent impact on child growth). It is interesting to observe that,

contrary to the case of normal boys and girls, the time of onset of the spurts for Noo-

nan children seems to be gender-independent.

It may be instructive to plot the growth velocity, defined as

v tð Þ ¼ dy tð Þ
dt

¼ a y tð Þð Þy tð Þ ð10Þ

vs. time (see Figure 6). The solid lines in the four subplots of Figure 6 (i.e. general

population and Noonan, boys and girls) exhibit a smooth but relevant change in the

velocity pattern in the (U1 + F1) curves at the onset of puberty. By comparison, the U1

curves (dotted lines) have very high and narrow peaks at the inception of the spurts,



Table 2 Fitting parameters and R2 values corresponding to the curves shown in
Figures 2, 3, 4, 5, 6 with reference to the three PUN classes U1, (U1+H1) and (U1+ F1)

U1 U1+H1 U1+ F1

Boys (1965) y0(cm) 69.67 66.71 65.06

a0(1/yr) 0.12 0.14 0.16

β0(1/yr) -0.1 −0.14 −0.17

tm(yr) 13.51 12.75

y1(cm) 10.03 17.76

β1(1/yr) −0.53 −0.59

σ(yr) 2.00

R2 0.995 0.998 0.999

Girls (1990) y0(cm) 64.14 62.91 60.65

a0(1/yr) 0.15 0.1672 0.21

β0(1/yr) −0.15 −0.1696 −0.25

tm(yr) 9.3377 9.37

y1(cm) 4.3249 17.99

β1(1/yr) −0.1838 −0.38

σ(yr) 3.21

R2 0.995 0.997 0.999

Noonan boys y0(cm) 67.58 65.34 62.22

a0(1/yr) 0.09 0.1 0.13

β0(1/yr) −0.07 −0.1 −0.15

tm(yr) 11 12.83

y1(cm) 2.81 15.57

β1(1/yr) −0.08 −0.43

σ(yr) 2.29

R2 0.995 0.994 0.998

Noonan girls y0(cm) 60.02 58.4 57.56

a0(1/yr) 0.12 0.14 0.15

β0(1/yr) −0.12 −0.15 −0.16

tm(yr) 12 11.79

y1(cm) 5.83 9.26

β1(1/yr) −0.67 −0.93

σ(yr) 1.28

R2 0.995 0.998 0.998
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which are not consistent with natural development and even less with the statistical na-

ture of the data.

Finally it can be observed that β1 is larger (in absolute value) for boys (−0.59) than
for girls (−0.38) in the general population, while β1 for Noonan girls (−0.93) is larger

than for Noonan boys (−0.43). Something similar happens with σ.

All the datasets analysed up to here are transversal, as stated. However, in order to evalu-

ate the effect of Growth Hormone (GH) administration therapy to selected cases of critically

short stature in infancy, “longitudinal” curves should be investigated. As an example, the

dataset referring to a single young male, denoted by the code IVS3 in ref. [44], is analysed in

Figure 1: it shows the two spurts, the first corresponding to the therapeutic administration

of GH and the second to prepuberal growth (Table 1 reports the corresponding parameters

and R2 values). In this case, as well as in similar ones, idiopathic short stature is corrected



Figure 3 Height vs. age from dataset 3 (Noonan children): (a) boys, (b) girls. Only the fitting by
means of the (U1 + F1) class is reported for brevity. The fitting parameters and R2 values are reported in
Table 2.
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by the therapeutic administration of GH, which induces an additional ‘artificial’ spurt. A

(U1+F2) model is therefore required to account for the two spurts.
Conclusions
Growth charts represent a very useful reference tool for pediatricians to monitor the

growth of individual children (i.e. size, rate of growth and effects of an eventual treat-

ment). They are transversal in the sense that they yield avarage values (divided into per-

centiles) over large, well defined populations, e.g. boys (or girls) in a given country and

time frame. Several, mostly heuristic, formulations have been proposed in order to

model the growth, i.e. to fit e.g. the median growth curve (out of the charts) from early

childhood to maturity. In this contribution we have presented an alternative approach,

based on the formalism of the Phenomenological Universalities (PUN) [33,34], which

represent a new, completely general and interdisciplinary methodology.

As a result, we have found that the main PUN class studied to date, i.e. U1 and U2

[36-38,41], can only predict the overall human growth pattern. For a more realistic de-

scription it is necessary to add to it one or more “spurts”, as also suggested by other

authors [49] and well justified on biological grounds. Consequently a new PUN class

(UN+ FM) has been developed and shown to provide excellent agreement with some



Figure 4 Decomposition of the (U1+ F1) fitting curve (continuous lines) into two parts: U1
(dashed-dotted lines) and “spurt” (dotted lines). (a) general population: boys (black) and girls (red on-
line). (b) Noonan boys (black) and girls (red on-line).
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standard auxological datasets. Its formalism can be suitably related to the biological de-

scription of bone plate growth under selective hormonal stimulation of the bone

epiphysis. In other words, the additional increase of stature is the “macroscopic” re-

sponse to a well defined biological signal.

The accuracy of the fitting (see Figures 1a, 2c, 3c, and 4) is very important not only

“per se”, but also because it adds a real significance to the model parameters. E.g., by

comparing Figures 2c and 32c, we not only find that boys grow much later but faster

than girls (as is well known), but we are also able to quantify the difference: growth

spurt inception time (13 yr vs. 9 yr) and duration (2 yr vs. 3.2 yr) and total accretion

due to the spurt (almost the same: 17.7 cm vs. 18 cm).

Likewise we may quantify the differences between the growth patterns of healthy vs.

growth impaired children (e.g. Noonan [50-52]). E.g., as we can see in Table 2, the time



Figure 5 Growth velocity for (a) general population: boys, (b) general population: girls, (c)
Noonan boys, (d) Noonan girls. The solid lines correspond to (U1+ F1) fitting, while the dotted lines refer
to U1.

Gliozzi et al. Theoretical Biology and Medical Modelling 2012, 9:17 Page 12 of 15
http://www.tbiomed.com/content/9/1/17
of pubertal growth onset is quite different in Noonan vs. control girls (about two years

later for the latter), while it is approximately the same for males. Likewise for the pu-

bertal growth duration. As a consequence the difference in “added” stature is relatively

small for boys (about 2 cm), while it is dramatic for girls (about 8 cm!). This suggests

(even if other effects should also be considered, such as the time of reference for
Figure 6 (a) Height vs. age data for an individual male denoted by the code IVS3 [44] and
corresponding (U1+ F2) fitting. (b) Corresponding velocity.
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measurements) that pubertal growth is much more severely affected by Noonan syn-

drome in females than in males.

We have also presented the result of one case of idiopathic short stature treated by

the administration of GH. Correspondingly our computer program has revealed the ap-

pearance at about 3 years of age of a very short spurt (see Figure 1a), caused by a very

narrow peak in the growth velocity (Figure 1b). Although a more careful analysis would

be required to correlate the dosage of GH and its incremental effect on bone length,

we believe that our model could be further refined and be used as a “clinical simulator”

for the optimization of GH therapies. This approach could eventually help pediatricians

and endocrinologists to optimise the clinical protocol for each specific growth pro-

blems. As an example we have analyzed a longitudinal growth curve relative to a nor-

mal boy. We tried a sort of blind test for the model. We took the first 9 points of the

curve (before the spurt) and fitted (red curve), using, as an initial guess of the model,

the parameters relative to the growth of the normal boys (Table 2, U1 + F1), in order to

forecast the further growth of the boy. Then we repeated the procedure with 10 points

(one point after the spurt, green curve) and with all the 17 points (black curve). It is

clear from Figure 7 that the information about the localization in time and intensity of

the “spurt” is necessary to yield a good prediction. In fact, in this particular case, the

pubertal development happened earlier with respect to the mean value, which, of

course, could not be forecast by the model.

To conclude, the formalism presented in this contribution may also be applied to the

analysis of other datasets of auxological interest, e.g. referring to variables such as the

Body Mass Index (BMI): see e.g. [47]. It may also be used for the systemic analysis of

two or more variables assembled as a complex or vectorial quantity [39]. In this case

the goal is not only to investigate their time evolution, but also the degree of correl-

ation and mutual dependence. As an example it would be instructive to study how

mass growth follows stature in terms of relative increment of the various body compo-

nents occurring differently with age, sex and life style.
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Figure 7 Instance of longitudinal growth curve relative to a normal boy fitted by means of the
(U1+ F1) model with a different number of datapoints: 9 points (red curve), 10 points (green curve)
and 16 points (black).
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