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Quantifying the contribution of chromatin
dynamics to stochastic gene expression reveals
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Abstract

Background: A number of studies have established that stochasticity in gene expression may play an important

role in many biological phenomena. This therefore calls for further investigations to identify the molecular

mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the

role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells.

Results: For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter

integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was

inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene

expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a

marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism

involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process

of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the

closed state, and that the agents we used mainly seem to act on the opening probability.

Conclusions: In this study, we report biological experiments combined with computational modeling, highlighting

the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the

mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with

long (hours to days) periods of quiet state.
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Background
Although the importance of stochasticity in gene expres-

sion has been anticipated more than three decades ago

[1-3], the existence of a strong stochastic component in

gene expression has only recently been experimentally

demonstrated, showing that, despite constant environmen-

tal conditions, isogenic cells do show significant fluctua-

tions in their gene-expression levels [4-10]. Moreover,

regulated stochasticity, and its resulting phenotypic diver-

sity, has been shown to be involved in several biological

processes [11], including cell differentiation [12,13], devel-

opment [14,15], virus decision-making [12,16], and bacter-

ial survival during environmental stress [17-20].

Many studies have shown that the average expression

level of a gene depends strongly on its genomic location

[21-25]. In cultured cells, the silencing position effect

(similar to the position effect variegation seen in Droso-

phila and mammals) is a well-characterized example of

the influence of chromatin on gene expression; with a

stably integrated transgene, a progressive silencing of

the reporter occurs, at a rate that strongly depends on
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the integration site [26]. Several studies based on treat-

ments with 5-azacytidine (a DNA-demethylating agent

[27]) and with trichostatin A (a histone deacetylase inhi-

bitor [28]) have shown that DNA methylation and his-

tone acetylation play a pivotal role in this process.

Indeed, these treatments reverse the extinction of the

transgene [26,29]. Almost all of these studies, however,

have focused on the mean value of gene expression, and

only a few have addressed the question of the relation-

ships between stochastic gene expression and chromatin,

in either yeast [30-35] or higher eukaryotes [36-39].

Initially conducted in prokaryotes [4,40], experiments

to explore the molecular causes of stochastic gene

expression were rapidly extended to yeast models

[6,31,41,42]. These experiments suggested that, other

than trivial aspects such as small molecule numbers,

more sophisticated causes, such as chromatin remodel-

ing, were important players in stochastic gene expression

[43]. More precisely, of the various possible sources of

stochasticity, one in particular, namely locus-dependent

chromatin dynamics (for example, transitions between an

‘open’ state that allows gene transcription and a ‘closed’

state that represses gene transcription) is a promising

candidate to explain the regulation of stochastic gene

expression. This role of chromatin was highlighted by the

work of Becskei et al., who in 2005 showed the existence

of genomic domains in the yeast genome, which produce

a low transcriptional noise (that is, the part of stochastic

gene expression arising from irregular transcript produc-

tion) [31]. The following year, by analyzing the variability

of mRNA levels from tandemly and non-tandemly inte-

grated pairs of transgenes in mammalian cells, Raj et al.

identified the influence of genomic domain on transcrip-

tional noise, suggesting the importance of the switching

rate between chromatin states via remodeling. Gene acti-

vation or inactivation would occur in cases of chromatin

decondensation or condensation, respectively [36]. To

analyze the effect of chromatin remodeling on promoter

activation and therefore on stochastic gene expression,

Raser and O’Shea used yeast strains lacking components

of the chromatin-remodeling complexes. A major con-

clusion of their work was that the alteration of chroma-

tin-remodeling enzymes resulted in changes in stochastic

gene expression [42]. However, most of these studies

have tried to link chromatin dynamics to stochastic gene

expression using indirect approaches [31,36,42,44].

In many situations, from prokaryotes to eukaryotes, sim-

ple mathematical models describing the transcriptional

dynamics as a two-state process have been shown to

account effectively for the stochastic expression of a gene

[45,46]. Indeed, the two-state model, also known as the

‘random-telegraph model’ [47,48], now constitutes a stan-

dard in the field. This model assumes that the promoter

switches randomly between two states, ‘on’ and ‘off’, with

only the former allowing initiation events to occur. These

transitions could correspond to several mechanisms,

including assembly and disassembly of specific complexes,

progression through the cell cycle, or the recruitment of

the locus into transcription factories [49]. In many cases,

evidence supports the hypothesis that these ‘on’ and

‘off’ states primarily reflect alternative chromatin config-

urations [50].

Recently, using a short-lived luciferase protein, Suter

et al. monitored transcription at high temporal resolution

in single mammalian cells, and identified bursts of tran-

scription, a mechanism previously suggested in prokar-

yotes and eukaryotes [4,36]. Using the random-telegraph

model, they characterized the temporal patterns of tran-

scriptional bursts for different genes, and obtained the dis-

tributions of the ‘on’ and ‘off’ times [51]. Harper et al.

performed a complementary analysis of transcriptional

bursting in single mammalian cells [52]. By quantifying

the time dependence and cyclic behavior of the transcrip-

tional pulses from the prolactin promoter, they estimated

the length and variation of both transcriptionally active

and inactive phases. Both studies point to the existence of

a refractory ‘off’ period, but they diverge on the role of

chromatin remodeling; in contrast to the Suter study, in

which chromatin environment seemed to play a secondary

role in shaping bursting patterns, Harper et al. concluded

that chromatin remodeling may play an important role in

the timing of transcriptional bursting. Finally, based on

time-lapse fluorescence microscopy experiments, coupled

with the use of the two-state model, Dar et al. gave a

recent comprehensive study on noise in mammalian cells

[53]. In their work, these authors suggested that transcrip-

tional bursting, as opposed to constitutive expression,

dominates across the human genome. Moreover, by ana-

lyzing more than 8,000 distinct genomic loci, they found

that both frequency and burst size vary by chromosomal

location. Therefore, the role of chromatin dynamics in the

control of stochastic gene expression in higher eukaryotes

remains a central matter of debate.

In a preliminary study, our group showed, using iso-

genic cell populations expressing a fluorescent reporter,

that modification of chromatin marks, using chromatin-

modifying agents such as 5-azacytidine (5-AzaC) and tri-

chostatin A (TSA), induced significant effects on mean

fluorescence intensity (MFI) and normalized variance

(NV; that is, the variance normalized by the square of the

mean) [11]. We also showed that TSA and 5-AzaC had

different effects on NV, whereas their effects on MFI

were similar. Finally, investigating the possible reversibility

of the effects identified by flow cytometry after the drug

treatments, we found that MFI, NV, and the shape of the

fluorescence distributions tended to return to their initial

values after the treatment end. This result, which shows

full reversibility of the cellular system after important

Viñuelas et al. BMC Biology 2013, 11:15

http://www.biomedcentral.com/1741-7007/11/15

Page 2 of 19



modifications of the chromatin state, suggests that cells

could be able to temporally modify their level of stochastic

gene expression via modifications of chromatin marks,

before returning to their initial physiological state.

To assess the possible influence of chromatin-opening/

closing dynamics on the stochasticity of gene expression,

the next step was to combine biological experiments with

a modeling analysis. For that purpose, we generated a

series of clonal isogenic cell populations from chicken

erythrocyte progenitors (6C2 cells). These populations

were stably transfected with a unique copy of a reporter-

gene coding for the red fluorescent protein mCherry, but

the reporter was inserted at different chromosomal posi-

tions in each clone (Figure 1, left). Using flow-cytometry

measurements, we found substantial clone-to-clone dif-

ferences in the stochastic expression of the reporter. In

particular, some of the clones had very similar MFI but

different NV values. Because the only difference between

these clones was the genomic location of the reporter,

the observed differences in stochastic gene expression

must stem from the chromosomal positioning effect,

such as locus-specific dynamics of the chromatin sur-

rounding the transgene. To evaluate whether chromatin

dynamics significantly affect the stochasticity of gene

expression, we treated some clones with 5-AzaC and

TSA. Cell responses to these drugs clearly showed that

both MFI and NV were affected, indicating that the chro-

matin environment of the reporter gene plays a signifi-

cant role in the stochasticity of its expression. This result

confirmed preliminary conclusions obtained by our team

[11]. By fitting a two-state model to the experimental

data, we provided a mechanistic interpretation for the

clone-to-clone diversity of expression patterns, in terms

of differences in chromatin dynamics. More specifically,

based on both analytical derivations [45] and simulations

[54], we explored the dynamics of the model and itera-

tively refined its kinetic parameters. The outcome was an

accurate reproduction of the distribution of expression

levels before, during, and after drug treatment.

Our current study supports the view that expression

dynamics is strongly driven by short and infrequent tran-

scriptional bursts, as previously described in other models,

including mammalian models. However, the major advance

of this work is that, whereas the duration and intensity of

bursts did not show strong clone-to-clone differences, the

time between bursts was found to depend strongly on

genomic location and was broadly affected by drug treat-

ments that affect chromatin. Hence, the position-dependent

opening dynamics of chromatin emerges as a key determi-

nant of the stochasticity in gene expression.

Results
We generated a series of clones stably transfected with the

mCherry reporter, driven by the cytomegalovirus (CMV)

promoter, then using splinkerette PCR [55], we retained

six clones showing a unique reporter insertion site (see

Additional file 1, Table S1). These clones were then ana-

lyzed by flow cytometry, yielding for each of them the full

distribution of fluorescence, and the corresponding MFI

and NV (Figure 2A). It is important to emphasize that the

six clones differed only in their reporter insertion sites.

Based on the NV, a robust indicator of the stochasticity of

Figure 1 Experimental strategy used for assessing the role of chromatin environment on stochastic gene expression. After generation

of cellular clones expressing the fluorescent reporter mCherry, stably integrated as a unique copy into the genome, the fluorescence

distributions obtained by flow cytometry (’FACS’) were compared with simulated distributions generated by a two-state model (’Model’). After

experimental determination and exploration of transcription-translation parameters (r, transcription rate; g, translation rate; , mRNA

degradation rate; , protein degradation rate and a, protein fluorescence coefficient), the best parameter sets were identified, and then used to

compute the specific chromatin dynamics (kon and koff, which are, respectively, the opening and closing transition rates of the chromatin at the

reporter integration site) for each clone.
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gene expression [56], the clones could be sorted from the

most to the least stochastic, in terms of reporter-gene

expression as follows: C5>C7>C11>C3>C17>C1. More-

over, analyzing the relationship between NV and MFI, we

concluded that there is no direct linear relation between

these two parameters. Indeed, certain clones displayed

similar MFI but very different NV values (for example,

comparison of C3 with C5, or C11 with C17, Figure 2A).

This important dispersion of the points, around the

inverse tendency between NV and MFI values, also sug-

gests that mRNA abundance fluctuations were not the

major source of intrinsic noise in this context.

An explanation of these observations comes from a pre-

vious preliminary study, in which we investigated whether

chromatin dynamics are involved in these observed differ-

ences [11]. Using the same cellular clones (same cell line,

reporter, and environmental conditions) we performed the

5-AzaC and TSA treatments that would act directly on

chromatin by two different molecular means. Our results

showed that for the two drugs, modification of chromatin

dynamics had clear consequences for stochastic gene

expression [11]. However, in this previous study, we did

not assess how chromatin influences stochastic gene

expression.

Thus, for this purpose in the current study, we fitted

these data to a two-state model of gene expression, and

evaluated to what extent chromatin dynamics act on

stochastic gene expression. Under the assumption that

all parameters but those describing the dynamics of

chromatin would be identical in all the clones, we per-

formed an iterative screening of model parameters. This

allowed us to find these common parameters, and to

characterize the position-specific dynamics of chromatin

for each individual clone (Figure 1).

Description of the model

The choice of the model used to analyze our biological

data was crucial. Two models are classically used to

describe transcriptional stochasticity: 1) a Poisson model,

in which the gene has, at each instant, a given chance to

produce an mRNA, [7,47,57] and 2) a random-telegraph

model, in which the gene additionally switches randomly

between an ‘on’ state, in which transcripts are produces in

line with Poisson dynamics, and an ‘off’ state, in which no

transcripts are produced [43,45,57]. The Poisson model is

known to lead to a direct linear relationship between MFI

and NV on a log-log plot (that is, NV = 1/MFI) [38,58].

Because such a relation was not sufficient to describe our

data (Figure 2A), we adopted the more general random-

telegraph model. It cannot be excluded that extrinsic noise

may also participate to some degree in the observed fluor-

escence distributions. However, observing a variety of dis-

tributions for different insertion sites of the reporter

(Figure 2A) strongly suggests that the major source of

noise is intrinsic. Indeed, as sources of extrinsic noise are

independent of the reporter, they were expected to have

somewhat similar effects in all the different clones. In

addition, given the long mRNA and protein lifetimes in

our system (see below), only the very slow extrinsic fluc-

tuations are likely to affect the protein levels of the

reporter.

Because flow cytometry quantifies protein fluorescence,

the model must describe the expression process up to

the protein level (including mRNA and protein produc-

tion and degradation rates) and requires an additional

parameter to convert protein quantity into fluorescence

intensity (Figure 1, right). Thus, for each clone, the

model had seven parameters: kon and koff , respectively

Figure 2 Exploration of model parameters to explain the

observed stochastic gene expression for six cellular clones.

(A) Relationship between normalized variance (NV) and mean

fluorescence intensity (MFI) for six cellular clones (C1 to C17) stably

transfected with a unique copy of the fluorescent reporter mCherry

that was integrated at a different locus in each clone. Black line

shows the relationship NV = 1/MFI. (B) Distributions of the possible

chromatin dynamics. For each clone, all 1,087 possible couples of

(1/kon; 1/koff) values were plotted, expressed as mean open time

(1/koff) and mean closed time (1/kon) for all transcription-translation

parameter sets explored analytically in the two-state model (see

Methods). One dot therefore represents one possible analytical

solution for that clone. h, hours; d, days; m, months.
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describing the rates of chromatin opening and closing, r

and g, describing the transcription and translation rates,

and , describing the transcript and protein degrada-

tion rates, and finally, a linear coefficient a, representing

the fluorescence intensity of a single mCherry protein in

the arbitrary unit measured by the flow cytometer. In

order to fit the model, the optimal set of parameters must

be identified, under the assumption that r, g, , and a

are identical in every clone, but that kon and koff are clone-

specific. From this point, we refer to the five former para-

meters as the ‘transcription-translation parameters’ and to

the two latter ones as the ‘chromatin-dynamics para-

meters’. Because we had six clones, we actually had to

determine 17 parameters ((6 × 2) + 5) in order to fully

specify the model and to ultimately estimate the chroma-

tin-dynamics parameters for each clone. For these 17 para-

meters, the two degradation rates ( and ) were

determined experimentally from inhibition-based experi-

ments (see Methods; see Additional file 2, Figure S1). We

found respectively that = 1.63 × 10-3/min (mRNA half-

life of 7 hours and 4 minutes) and = 1.76 × 10-4/min

(protein half-life of 65 hours and 47 minutes). The sensi-

tivity of our results with regard to uncertainty in these

experimentally determined values will be discussed later.

These values are consistent with average mRNA and pro-

tein half-lives previously measured in mammalian cells (9

and 46 hours, respectively) [59]. Following this, we needed

to find the optimal values of a set of 15 parameters to fit

the experimentally measured fluorescence distribution of

the six clones.

Several methods can be used to find such a parameter

set. In particular, there are various optimization methods

available, such as simulated annealing. However, because

the model-experiment comparisons in our study involved

stochastic simulations, the objective functions that have to

be minimized (that is, some distance measure between pre-

dictions and observations) are only estimated up to a cer-

tain error level. Although small, this error level makes most

optimization algorithms inadequate. Indeed, these algo-

rithms rely on estimating the gradient or Hessian of the

objective function, based on a finite difference procedure

(that is, evaluating small variations in the objective function

resulting from small variations in its parameters). In a con-

text where successive estimations of the objective function,

even for the same parameters, may display random varia-

tions, these optimization algorithms are clearly doomed to

failure. Overcoming this issue would require both running

extremely long and computationally intensive simulations

to minimize the error, and using coarse variation steps in

the gradient-estimation procedure, which could result in

numerical instabilities during the optimization.

For this reason, we decided to conduct a systematic

parametric exploration, as this is a procedure that does

not require local smoothness of the objective function. In

addition, a single evaluation of the objective function

represents a heavy computation load; for example, invol-

ving thousands of realizations of a Gillespie simulation

that are followed over long periods of simulated time (see

Methods). In this context, a systematic parametric

exploration allows massive parallelization of the computa-

tions on a grid. The sequential evaluation imposed by opti-

mization algorithms makes this approach prohibitive.

However, because the systematic exploration still requires

intensive computations, we used iterative screening of the

model parameters to progressively reduce the parameter

space that has to be simulated.

This iterative screening was based on three steps in

which we successively used analytical derivations on the

model (step 1), additional experimental data (step 2), and

finally, stochastic simulation (step 3). Thanks to these suc-

cessive screenings, we were able to reduce by a factor of

30 the number of parameter sets to be simulated, thus

making the problem computationally tractable. In the fol-

lowing sections, we describe the three screening steps and

the results we obtained from them.

First screening of model parameters, based on mean and

variance of fluorescence intensity

Mathematical derivations by Paulsson from the two-state

model [45] analytically provided the values of MFI and

NV as a function of all parameters: kon, koff , r, g, ,

and a. By inverting these equations (see Methods), we

were able to compute the chromatin-dynamics parameters

(kon and koff) for each clone from: 1) the experimentally

measured MFI and NV of the clone, 2), the experimentally

determined values of and , and 3) the unknown tran-

scription-translation parameters (r, g and a). Thus, only

three transcription-translation parameters remained to be

determined, making their combinatorial exploration com-

putationally tractable.

We explored wide ranges of these parameters that

included all biologically relevant values [60]: 20 values for r

(from 6 to 0.00833 mRNA/min; that is, a transcription

event occurring from every 10 seconds to every 2 hours

when the chromatin is open), 15 values for g (from 1 to

0.0003472 protein/min/mRNA; that is, a translation event

occurring from every 1 minute to every 2 days for each

mRNA), and 12 values for a (from 0.1 to 200 fluorescence

units per protein) [61] (see Methods for the exact tested

values). For each triplet (r, g, and a), we computed kon and

koff for each of the six clones from their experimental values

of MFI and NV. Of the 3,600 initial parameter sets, only

1,087 led to valid solutions, with the others leading to nega-

tive values for kon or koff for at least one clone. Figure 2B

shows the 1,087 possible pairs of values (kon; koff) that

resulted from this exploration for all the clones. It was
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found that, although the chromatin-dynamics parameters

could be the same order of magnitude, the mean open time

(1/koff, roughly between 1 minute and 1 day) was markedly

shorter than the mean closed time (1/kon, roughly between

6 hours and 4 days). This is characteristic of a transcrip-

tional activity in which mRNA production events occur in

brief bursts separated by longer silent periods.

The result of this first screening still produced more

than 1,000 valid parameter sets, with the values of kon
and koff spanning large intervals. This emphasizes that

NV and MFI alone are not sufficient to identify, for a

specific clone and therefore for a given genomic inser-

tion site, the parameters that best explain the observed

distribution of fluorescence.

Second screening of model parameters, based on

response to treatments with chromatin-modifying agents

In order to reduce the ranges of solutions, we conducted

additional experiments in which we modified the global

dynamics of chromatin in both the cells and the model.

We first treated three clones with the two chromatin-

modifying agents TSA and 5-AzaC. As expected, TSA

treatment, which leads to chromatin decondensation

[62,63], induced an increase in MFI over time (Figure 3A).

5-AzaC treatment, which inhibits chromatin condensation

[64], produced the same effect as TSA treatment, but to a

much lower extent. It is noteworthy that measures such as

MFI, NV, and the fluorescence distributions tended to

return to their initial values after removal of TSA and

5-AzaC, indicating full reversibility of the cellular system,

and therefore a conservation of physiological conditions

[11].

Based on these additional data, we could then exclude all

transcription-translation parameter sets that did not

account for the observed increase in expression levels even

if the chromatin was considered as constantly open (see

Methods). It is important to emphasize that we made the

assumption that the TSA and 5-AzaC treatments affected

only the chromatin-dynamics parameters. Using this strat-

egy, we were able to reject 86% of the parameter sets, thus

we kept only 114 transcription-translation parameter sets

for further analyses. Figure 3B shows the chromatin-

dynamics parameter sets (that is, kon and koff), correspond-

ing to the transcription-translation sets that were kept. All

retained cases had in common that the mean open time

1/koff was very short compared with any other timescale in

the model (in particular both the mean closed time 1/kon
and the mean mRNA lifetime ). Hence, the actual

duration of the bursts could not be estimated because two

parameter sets with different koff but an identical number

of mRNAs produced per active period will exhibit similar

distributions. For instance, if, on average, 20 mRNAs are

produced during bursts that last 30 seconds or during

Figure 3 Exploration of model parameters based on

treatments with chromatin-modifying agents. (A) Evolution of

mean fluorescence intensity following kinetics of treatment with

trichostatin A (TSA; solid line) and 5-azacytidine (5-AzaC; dotted line)

(0 to 48 hours) for three cellular clones. (B) Distributions of the

plausible chromatin dynamics. For each clone, all 114 possible

couples of (1/kon; 1/koff) values were plotted, expressed as mean

open time (1/koff) and mean closed time (1/kon), after removal of all

parameter sets that were not able to account for the transcription-

translation dynamics under TSA and 5-AzaC treatments. (C) This

experiment was the same as for (B), except than the transcription

rate (r) and the mean open time (1/koff) parameters were reduced

to a single effective parameter (r/koff), representing the mean burst

size. min, minutes; h, hours; d, days; m, months.
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bursts that last 10 minutes, the results will be practically

identical because mRNAs decay with a half-life of more

than 7 hours. Hence, as in other studies [36], we could not

determine the parameters koff and r, but only their ratio

r/koff , that is, the mean number of mRNAs produced dur-

ing a burst. This new effective parameter, referred to as

‘burst size’, reduces by 1 the number of parameters in the

model. At a higher level, protein synthesis/degradation

noise is only important in cases where there is a low copy

number [45]. Because low protein abundance would not

be detected in a cytometry measurement, this source of

noise is marginal compared with the noise from transcrip-

tion and mRNA synthesis/degradation. For instance, even

for the least variable clone (C1, which had NV = 0.12

approximately, in Figure 2A), a mean protein level as low

as 200 copies would only contribute less than 5% to the

measured NV. Hence, the parameters g and a directly

compensate for each other, and can be grouped into a sin-

gle effective parameter, ‘a·g’ (for example, producing twice

as many proteins with half the fluorescence does not affect

the distribution of fluorescence), reducing again by 1 the

number of fitting parameters.

Reformulating the sets of (1/koff ; 1/kon) couples retained

after the second screening (Figure 3B) in terms of (r/koff ;

1/kon), as shown in Figure 3C, we observed relatively simi-

lar ranges of values for the mean burst size r/koff for the

six clones (although values spanned from 1 to 200

mRNAs per burst). By contrast, the mean closed time of

chromatin seemed to be highly clone-dependent, ranging

from 6 to 12 hours for clone C1 and C17 to more than

2 days for C5 and C7 (Figure 3C). This suggests that the

chromatin-opening dynamics depend on the clones, and

therefore on the chromatin environment of the reporter.

Third screening of model parameters, based on full

distribution of fluorescence

To select the best parameter set from the 114 remaining

sets, we simulated distributions of fluorescence corre-

sponding to the remaining parameter sets, and compared

them with the fluorescence distributions measured by flow

cytometry. For each parameter set, we used a stochastic

simulation algorithm (SSA) [54], to simulate 50,000 cells

per clone, and then computed the resulting fluorescence

distributions. Background fluorescence levels were added

to the simulated distributions by convolution with the

fluorescence distribution of the negative control-cell popu-

lation (that is, cells that did not express any fluorescent

protein). The resulting values were then compared with

the six experimental distributions using a Kolmogorov-

Smirnov test.

Analyzing the comparison scores (distances) from the

Kolmogorov-Smirnov test of the 114 parameter sets, we

were able to identify the subsets of parameters, and

therefore the corresponding chromatin dynamics, that

were the best fit to the distributions measured by the flow

cytometer (Figure 4A). Note that most sets correctly fit

the experimental data (104 of the 114 sets corresponding

to a single peak of good scores; that is, <0.107), showing

that the previous screening had already selected the cor-

rect parameter sets. The final parameter sets are shown

(in black) in Figure 4B. For five of the six clones, we were

able to generate distributions similar to those measured by

flow cytometry (Figure 4C). However, when analyzing the

bi-modal clone C7, we found that the simulated distribu-

tion fit only the high modality of the fluorescence dis-

tribution. This third screening supports our previous

observation about the relatively similar mean burst size

between the clones but the significantly different mean

closed times (Figure 4B). Looking at the chromatin-

dynamics parameter set that best fit the flow-cytometry

distributions for all clones (Figure 4B, in brown), our

study revealed that for the six clones, mean burst sizes

were between 30.0 and 118.9 mRNAs per burst, and mean

closed times between 756.7 minutes (~12 hours) for the

fastest clone to 5197.6 minutes (~3.5 days) for the slowest

clone. However, it is important to note that, taking into

account the full range of viable parameters (Figure 4B, in

black) clone dynamics could be fit with similar values for

their mean burst sizes (ranges of correct values are over-

lapping between the clones) whereas their mean closed

time had to be different (Figure 4B).

Figure 4D illustrates, for each clone, the results of simu-

lations of the chromatin dynamics of a single cell, for the

best parameter set. The best chromatin-dynamics para-

meters for each of the six clones are shown in Table 1.

It is interesting to compare the differences between the

different clones (that is, for the different chromatin envir-

onments) in terms of chromatin dynamics and their con-

sequences on the transcription and translation of the

mCherry reporter. It seems clear that the transcriptional

activity of the reporter can vary from frequent bursts (C1)

to rare bursts (C5), depending on the chromatin context.

These important differences could very well be the depen-

dence of the local chromatin properties at the reporter

insertion site. Finally, the mRNA transcription rates and

mRNA copies per cell we defined for the six clones (on

average 2.1 and 21 respectively) (see Additional file 4,

Table S2) were in the same order of magnitude as those

previously reported [59,65].

Chromatin dynamics at genomic insertion sites and

sensitivity analysis

By combining biological experiments, analytical compu-

tations and stochastic simulations, we were able to esti-

mate all the model parameters that best fit the measured

flow-cytometry distribution for the different integration
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Figure 4 Exploration of model parameters based on a comparison of fluorescence distributions and stochastic simulation algorithm (SSA)

simulations. (A) Distribution of parameter set scores. The lowest scores correspond to the better fits. These fits were obtained using values of g and

a, the parameters contained within the joint a·g value of 0.035 arbitrary unit/min/mRNA. The upper limit (0.107) of the single peak showing the best

scores is specified (vertical line). (B) Distribution of chromatin dynamics (’mean burst size’ and ‘mean closed time’), obtained for the best parameter

sets, after distribution comparisons for the six cellular clones. To compare with the possible chromatin dynamics presented in Figure 3B, this figure

shows the chromatin dynamics obtained for the best parameter sets (black; score means between 0.07 and 0.107; see panel (A)) and the optimal

parameter set for each clone (brown). (C) Illustration, for the six cellular clones, of the comparison between the mCherry fluorescence distributions

measured by flow cytometry (’FACS’; solid line), and simulated fluorescence distributions (’Modeled’; dotted line) obtained with the best chromatin-

dynamics parameter set. (D) One run of Gillespie SSA per clone showing the chromatin dynamics (opening and closing chromatin events are shown

in black) for one virtual cell of the isogenic population distribution (see panel (C)). Consequences of chromatin open/closed dynamics on mRNA

transcription and protein translation are shown in blue and in red respectively. Production (+) and degradation (-) evolutions of mRNAs and proteins

are also indicated. (For illustration, Figure S2 (see Additional file 3) shows the same analysis as that presented in this figure, but for the parameter set

with the highest (that is, worst) comparison score among the best ones).
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sites. We now used some of these parameters (that is, a·g,

, and ) to directly estimate the possible chromatin-

dynamics parameters for any couple (MFI and NV), each

corresponding to a different genomic insertion site of the

reporter. We also used these parameters to estimate the

sensitivity of the model (that is, the variation in the chro-

matin-dynamics parameters depending on the two main

indicators of gene expression, MFI and NV) in a biologi-

cally relevant parameter space. Indeed, we were able to

use the best set of transcription-translation parameters

that we obtained, along with a modified Paulsson’s equa-

tion system, to determine the mean closed time of chro-

matin and the mean size of transcriptional bursts from the

mean and NV of any similar construction (that is, the

same cells but different insertion point) measured by flow

cytometry (Figure 5). This can be represented by two

three-dimensional graphs: one for the mean closed time

and one for the mean burst size. It should be noted that

both graphs are linked because each couple (MFI and NV)

corresponded to a single couple (mean burst size and

mean closed time). Two important elements could be

derived from these three-dimensional graphs. First, as

shown in panel A, the mean closed time was determined

mainly by the NV value, whereas MFI only had a marginal

contribution (at least in the activity domain of the mea-

sured clones). In other words, whatever the average tran-

scriptional activity, the mean closed time could be derived

directly from the variability in expression levels, highlight-

ing the informational content of stochasticity in gene

expression [66]. By contrast, it can be seen from panel B

that, to compute the mean burst size, both measures are

necessary. Interestingly, the results presented here show

that, for our cell lineage, fluorescence distributions, which

are relatively easy to measure by flow cytometry, coupled

with a pertinent and robust analysis, allowed us to obtain

valuable information about the chromatin-dynamics

parameters.

Finally, we determined how the reported values (Table 1)

are affected by uncertainty in the experimentally deter-

mined mRNA and protein half-lives by conducting sensi-

tivity analysis on equation 3 (see Methods). We found that

variations of ±5% of either mRNA or protein half-life

resulted in variations in mean closed time and mean burst

size that were always smaller than 5%. We therefore con-

cluded that any experimental uncertainty in the mRNA and

protein half-lives would only marginally affect the para-

meter values obtained through the model.

Testing and validation of the model following a dynamic

evolution of the chromatin state

To test the contribution of chromatin dynamics to sto-

chastic gene expression and the quality of the parameter

set we obtained, we used our model to simulate a situation

in which the chromatin dynamics were profoundly

Table 1 Chromatin-dynamics parameters proposed for

the six cellular clones.

Clone 1/kon
a

r/koff
b

C1 756.7 50.9

C3 1420.5 31.2

C5 5197.6 118.9

C7 3267.7 83.6

C11 2271.8 82.8

C17 882.7 30.0

aMean closed times (1/kon) are expressed as minutes.
bMean burst sizes (r/koff) are expressed as mRNAs.

Figure 5 Inference of burst size and closed time from mean and normalized variance (NV) of protein levels. (A) At steady states, using

the best transcription-translation parameter set (r, , g, and a) and the modified Paulsson’s equation system, the mean closed time could

be calculated from the protein mean and protein NV (red grid). (B) Using the same data and equation system as in panel (A), the mean burst

size could be calculated from the protein mean and protein normalized variance (red grid). Note that grids of both panels are linked because

each value pair (protein mean and NV) corresponds to a single value pair (mean burst size and mean closed time). For both parts, clones C1, C3,

C5, C7, C11, and C17 are represented as blue points on the grid, and all axes are on a logarithmic scale.
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modified. For this, we used the flow-cytometry data from

the TSA-treated clones C5 and C11 (5-AzaC was not

tested because it produced less intense effects). During

TSA treatment, the distributions of fluorescence, reflecting

the expression of the mCherry reporter, gradually shifted

to higher fluorescence values (Figure 3A, 6A). According

to our study, to obtain such dramatic effects, the dynamics

of chromatin at the reporter insertion locus must have

been modified by reducing the mean closed time, increas-

ing the mean burst size, or a combination of both. Because

both parameters affect the transcriptional activity of the

reporter, all the possible combinations that can account

for the observed change in expression form a line in the

mean closed time/mean burst size space (Figure 6B; see

Methods). We explored the chromatin dynamics for para-

meter sets lying along this line, and found the set that best

fit the new flow-cytometry data. As for the previous

experiments, we systematically explored the different para-

meter sets by sampling 11 points on the line between the

two extreme situations mentioned above. It should be

noted that, for this exploration, we considered the tran-

scription-translation parameter set as constant, identical

to the one computed previously (Figure 4A). We found

that the TSA treatment seems mainly to modify the chro-

matin mean closed time; for the two clones used in this

experiment, TSA reduced the mean closed time from

more than 1 day (C11) and more than 3 days (C5) to 1

and 2.5 hours respectively (Figure 6B). By contrast, mean

burst size seemed to be increased only slightly. To support

this result, we performed stochastic simulations with the

retained chromatin-dynamics parameters to generate

fluorescence distributions that we compared with the

experimental flow-cytometry distributions (Figure 6C). For

the two clones, the simulated distributions correctly fit the

flow-cytometry values at the end of the TSA treatment

(48 hours). However, for the first time point (8 hours of

treatment), the simulated fluorescence distribution was

shifted relative to the biological experiment.

The evolution of the comparison score between

the measured and simulated data (Figure 6C, insets)

confirmed that during the first hours of treatment the

simulation was a poor fit to the flow-cytometry data.

However, after 24 hours, a significant improvement

occurred, and after 48 hours of treatment, the scores

measured for the two clones were equivalent to those

measured before the TSA treatment (0 hour of treat-

ment, Figure 4A, C). This clearly demonstrates that the

model correctly rendered the new chromatin dynamics

at steady state, although it was not able to fully repro-

duce the transient period. This is probably due to the

kinetics of the drug effect, which was considered

immediate in the model (the chromatin dynamics being

changed immediately at the treatment time) whereas, in

real cells, the chromatin modifications probably take

place more gradually, thus delaying the activity of the

drug.

To illustrate the consequences of the new chromatin

dynamics on the transcription and translation induced by

the TSA treatment, Figure 6D shows SSA simulations of

the cell dynamics for the two clones before and after treat-

ment. Owing to the low frequency of chromatin-opening

events before treatment, a period of more than 10 days is

shown whereas the TSA treatment was simulated for only

48 hours. The simulation clearly indicates the effects of

TSA treatment on the chromatin dynamics and empha-

sizes the increased frequency of the chromatin-opening

events, resulting in an increase in mRNA and protein

concentrations.

Discussion
The importance of stochasticity of gene expression in

many key cellular activities was appreciated many dec-

ades ago, and is now supported by strong experimental

evidence [11].

Analyzing stochastic expression of a stably integrated

fluorescent reporter in six isogenic cell populations, differ-

ing only in their reporter integration site, this study pro-

vides new evidence suggesting that the local chromatin

environment (reporter insertion site) influences stochastic

gene expression. Our results are in agreement with pre-

vious studies on HIV gene expression, where it was shown

that the existence of different fates for infected cells corre-

lated with the virus-integration sites [16,50], and that tran-

scriptional burst size and burst frequency vary depending

on the virus-integration sites [38,39]. This chromosomal

positioning effect on stochastic gene expression was also

shown in yeast and in mammalian cells [31,36], suggesting

the existence of genomic local domain-level noise, prob-

ably under the control of the switching rate of chromatin

between the open and closed configurations [31,36,42].

The biological function of this domain-level noise is not

yet completely understood. Batada and Hurst showed in

yeast that genomic domains that enable low noise act as

sinks for essential genes, for which noise is more deleter-

ious than for nonessential ones [67], suggesting an evolu-

tionary pressure for shaping low-noise genomic domains.

It is to be noted here that local chromatin dynamics is not

the sole difference between the integration sites; other

genomic features, possibly correlated with chromatin

states, could also be involved. We are currently investigat-

ing such a question on a genome-wide scale.

Using a two-state model, we found that the observed

NVs and MFIs for each clone alone are not sufficient to

identify efficiently, for a specific chromatin environment,

a restricted set of parameters that best explain the obser-

ved differences between the six clones. We thus used a

more complex strategy exploiting the full distribution of

fluorescence as measured by flow cytometry. By mixing
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Figure 6 Model simulation of the perturbation of chromatin dynamics after trichostatin A (TSA) treatment. (A) Effects of TSA-treatment

kinetics on the mCherry fluorescence distributions for two cellular clones, C5 (red) and C11 (blue) measured by flow cytometry. (B) New

chromatin dynamics (mean burst size (r/koff) and mean closed time (1/kon)) fitting the observed fluorescence distribution evolution induced by

TSA treatment. Different examples of these chromatin dynamics, inducing a higher open mean time (resulting from TSA treatment), are

illustrated in the detailed view. After distribution-comparison tests, the best new chromatin dynamics (green), and those related to the steady

state (brown) were ascertained. min, minutes; h, hours; d, days. (C) Simulated mCherry fluorescence distribution evolution obtained for the best

new chromatin dynamics (see panel (B)). (Insets) Evolutions of the distribution-comparison scores (comparisons between measured distributions

after TSA treatment and the simulated distributions). (D) One run of the Gillespie SSA per clone showing the dynamics of the chromatin before

and during 48 hours of TSA treatment (opening and closing chromatin events are shown in black) for one virtual cell of the isogenic population

distributions (see panel (C)). Consequences of chromatin open/closed dynamics on mRNA transcription and protein translation are shown in

blue and in red respectively. Production (+) and degradation (-) evolutions of mRNAs and proteins are also shown. The beginning of TSA

treatment is indicated by a vertical blue line. (For illustration, Figure S3 (see Additional file 5) shows the same analysis as presented in this figure

but for a parameter set (same as used in Additional file 3, Figure S2) showing a weaker fit).
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analytical models, complementary experiments, and sto-

chastic simulations, we progressively identified the para-

meters that best fit the flow-cytometry distributions. The

final set of parameters we obtained was able to reproduce

accurately the experimental data for all clones except the

unique bi-modal one, C7, for which the simulated distri-

bution fit only the high modality. This bi-modal distribu-

tion observed for clone C7 could be due to: 1) specific

chromatin dynamics related to the genomic insertion site

of the reporter, or 2) a genetic mutation event affecting

the reporter-gene integrity and resulting in two genetically

distinct subpopulations. In the first case, if the transition

rates between active and inactive states are extremely slow

relative to transcript and protein degradations, each pro-

moter state would be relatively stable, and this transcrip-

tion regime could result in bi-modal protein expression

[4-6]. However, in the context of a two-state model, the

value of the distribution between the two modes normally

reflects the transient dynamics taking place after the gene

switches from one state to the other, producing distribu-

tion tails from each mode towards the other. For clone

C7, this part of the distribution between the two well-

separated modes was notably low, almost null. This indi-

cates that the passage from one state to the other was

extremely rare, so rare that the protein half-life (although

rather long at ~66 hours) is negligible in comparison.

Such a slow dynamic is unlikely to be caused by chromatin

dynamics. Indeed, during the submission of this work, very

recent experimental evidence suggested that the bi-modal

distribution of clone C7 arose from a genetic mutation of

the reporter (Dr Alexander Skupin, Dr Aymeric Fouquier

d’Herouel and Dr Sui Huang, ISB, personal communica-

tion). This event induces extinction of the transgene in a

subpopulation of C7, and the appearance of the low mod-

ality (data not shown). Including this subpopulation in the

fitting process would therefore induce a bias. Conse-

quently, we re-ran the analysis, taking into account only

the five clones showing a unimodal distribution. The chro-

matin-dynamics parameter set that best fit the flow-cyto-

metry distributions for all clones presented in Figure 4B

remained identical (data not shown), in accordance with

the fact that the initial fitting process fit only the high

modality of C7 and ignored the low one.

After selection of the best parameter sets and charac-

terization of the chromatin dynamics for each clone, our

work provided elements suggesting that the chromatin

state is essentially dominated by the closed state, as pre-

viously shown [52], but most importantly, that the chro-

matin environments of the clones clearly differed in their

mean closed time. Indeed, for all clones, the mean burst

sizes roughly comprised between 30 and 120 mRNAs per

burst, which is consistent with previous quantifications

[36,51,53,68-70], whereas the means closed times were

much more markedly clone-specific (roughly distributed

between 12 hours and 3.5 days). This result suggests that

the duration of the chromatin closed state could explain

the basal stochastic gene expression differences observed

between the six clones, in contrast to the mean burst

size, for which values overlapped when considering all

the best parameter sets. Therefore, the mean closed time

could be an essential relevant parameter involved in the

regulation of stochastic gene expression. The simulation

demonstrated the existence of a highly bursty transcrip-

tion process. It is noteworthy that a previous study using

the CMV promoter did not observe such transcriptional

bursts or intervals of inactivity [71]; however, that study

used timescale analysis with a window that was signifi-

cantly shorter than that used in our work. The use of the

CMV promoter was essential for our study. In addition

to overcome technical bias (see Methods), the fact that,

using a strong promoter, we found significant differences

between clones in gene-expression dynamics, and there-

fore genomic-integration sites, suggests that the source

of the observed noise is related to the gene context (for

example, chromatin state). The study strongly suggests

that similar results could be obtained using a weaker

endogenous promoter. Recent literature seems to corro-

borate this hypothesis; in the recent work of Dar et al.,

the authors showed that the genomic-integration site

influences burst kinetics, with a the promoter type having

a marginal influence [53]. Understanding promoter-spe-

cific effects would require abolishing the context effect

that is, performing a study using different promoters in a

controlled genomic location. This is currently being

addressed in our group.

The results presented here also show how, using a two-

state model and fluorescence distributions measured by

flow cytometry, possible chromatin-dynamics parameters

can be identified. In this study, the filtering of promoter

activity by mRNA and protein dynamics allows inference

of temporal information from a steady-state measurement

(that is, fluorescence distributions). In this regard, the

mRNA and protein half-lives are the components that

define the range of timescales that can be assessed from

the experiment. Using destabilized reporters [51-53,70]

would probably improve the precision of our approach

towards faster timescales, provided that the fluorescence

signal remains sufficiently strong to be detected by flow

cytometry. In such cases, it should be possible to resolve

burst duration (1/koff) and transcription rate (r) separately.

Note, however, that having half-lives that are too short

could impair the ability to probe long timescales, such as

the time between bursts. In addition, resolving experimen-

tally the full distribution of chromatin open/closed times

(that is, the distributions of kon and koff) is only possible

with single-cell time-lapse experiments [51,52].

Finally, using our mathematical model, we simulated a

situation in which the chromatin dynamics were directly
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modified by TSA. As expected, TSA treatment activated

the mean reporter-gene expression [26,29,72] and

seemed to increase the fraction of time spent in the ‘on’

phase, probably as a result of a permissive chromatin

state [42,50,58]. The direct consequence of this treat-

ment was a gradual shift of the distributions towards

higher fluorescence values. After testing several possible

chromatin dynamics leading to chromatin opening, our

model was able to produce simulated distributions that

efficiently fitted the flow-cytometry values during most

of the TSA treatment. Moreover, the results suggest

that TSA treatment does not increase the duration of

the individual ‘on’ phase, but rather increases the fre-

quency of these phases by reducing the duration of the

‘off’ phase, thus globally increasing the relative propor-

tion of ‘on’ phases, and hence increasing the transcrip-

tional activity. It should be notes that, owing to the

instantaneous modification of the chromatin dynamics

imposed in the model, the simulated distributions were

a poor fit to the flow-cytometry data during the first

stage of the treatment, whereas they were a perfect fit at

the end of the treatment. In order to analyze the

kinetics of chromatin opening, a significant improve-

ment of our model would be to perform more precise

modeling of treatment kinetics leading the new chroma-

tin dynamics. Our study highlights the importance of

chromatin-opening events in the regulation of transcrip-

tion. It suggests that, to fine-tune the level of expression

variability of a gene, higher eukaryotic cells might act

on the chromatin mean closed time. This result provides

new clues about the mechanisms involved in stochastic

gene-expression regulation by chromatin remodeling.

Our work suggests that the probability of chromatin

entering an open state is a key determinant of gene

expression in our system. A recent study in Escherichia

coli, using a somewhat different strategy, identified that

the koff parameter (probability of shifting into a transcrip-

tionally closed state) was the main parameter used by the

bacterium for gene upregulation [73], which is therefore

in sharp contrast to our own results. This might be

related to the different biophysical nature of the ‘on’ and

‘off’ states in prokaryotes versus eukaryotes, owing to the

specific nature of chromatin in eukaryotes. Finally, our

results also emphasize the very slow dynamics of chro-

matin. Indeed, this work suggests that, depending on the

genomic location of the transgene, chromatin can stay in

a closed state for days, switching only occasionally to an

open active state. This emphasizes the slowness of the

stochastic-expression process. However, it is important

to note that even if chromatin seems to be a major player

in regulating gene-expression noise, we did not explore

the numerous other possible sources of stochasticity such

as cellular division [74,75], elongation dynamics [76], the

combinatorial interplay of complexes at the promoter [77],

presence of transcription factories [49], and other spatial

aspects [78]. Solutions for dissecting the contribution of

all the components of the regulation of stochastic gene

expression could be found by 1) dedicated experimental

studies, as for example in the recent work by Singh et al.,

in which the authors proposed a method to discriminate

between mRNA birth/death and promoter fluctuations as

intrinsic sources of noise [70], coupled with 2) a progres-

sive increase in the model complexity based on advances

in our understanding of the different mechanisms involved

in the stochasticity of gene expression.

Conclusions
In this study, we highlight the importance of the

dynamics of chromatin in the control of cell-to-cell varia-

bility. Our results suggest that long periods of ‘off’ time

(during which transcription does not occur) followed by

brief period of ‘open’ times (with a strong transcriptional

activity) can best explain the observed difference between

clones in terms of stochastic gene expression. This paves

the way for future studies exploring the role of chromatin

dynamics at a more local scale.

Methods
Cell culture

All experiments were performed on 6C2 cells, a chicken

erythroblast cell line transformed by the avian erythroblas-

tosis virus (AEV) [79,80]. Cells were maintained in alpha

minimal essential medium (Gibco-BRL,Gaithersburg, MD,

USA) supplemented with 10% (v/v) fetal bovine serum, 1%

(v/v) normal chicken serum, 100 µmol/l b-mercaptoetha-

nol (Sigma-Aldrich, St Louis, MO, USA), 100 units/ml

penicillin and 100 μg/ml streptomycin (Gibco-BRL), at a

maximum density of 1 × 106 cells per ml.

Generation of stably transfected clones

Stably transfected clones, expressing a fluorescent repor-

ter, were obtained as previously described [81]. Briefly,

6C2 cells were nucleofected in a transfection apparatus

(Nucleofector™ II; Amaxa Nucleofector™ Technology)

(T-16 program) using a commercial kit (Cell Line

Nucleofector® Kit V; Lonza GmBH, Cologne, Germany)

and a pT2.CMV-mCherry/pCAGGS-T2TP plasmid mix

(ratio 5/1). The pT2.CMV-mCherry plasmid was con-

structed using the same strategy as described for the

pT2.CMV-hKO plasmid [81], except that the hKO repor-

ter gene was replaced by mCherry, extracted from the

pRSET-B plasmid (kindly provided by Dr Roger Tsien,

University of California, San Diego, CA, USA). mRNA

birth/death fluctuations constitute a major source of sto-

chasticity in gene expression because many mRNA spe-

cies are present at very low molecular counts within cells
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[58,70,82,83], thus we reduced this source of intrinsic

noise by using the cytomegalovirus (CMV) promoter.

Obtaining a strong signal also allowed us to overcome

bias caused by autofluorescence in the flow-cytometry

data. The integration into genomic DNA of the reporter

is allowed by the Tol2 transposon system [84]; the CMV-

mCherry sequence, flanked by Tol2 motifs, is recognized

by a transposase (pCAGGS-T2TP), and randomly

inserted into 6C2 genomic DNA. Seven days after trans-

fection, stably transfected cells expressing the reporter

gene were sorted and individually cloned in U-shaped

96-well microplates (Cellstar Greiner Bio-One GmBH,

Frickenhausen, Germany) using a cytometer (FACSVan-

tage SE; Becton-Dickinson, Franklin Lakes, NJ, USA).

Molecular and cellular characterization of clones

For each clone, the genomic reporter insertion sites were

identified using a splinkerette PCR method as previously

described [81], in order to select only clones with a single

insertion site. Briefly, genomic DNA isolated from clones

expressing the gene reporter was purified by phenol

extraction and ethanol precipitation, before being

digested for 16 hours at 65°C with TaiI, a restriction

enzyme with a 4 bp recognition site. The digested DNA

was then ligated to a splinkerette adaptor for 1 hour at

22°C. After purification of the ligated product, two

rounds of PCR (PCR1 and nested PCR2) were performed

using primers specific for the reporter transgene mCherry

and for the annealed splinkerette adaptor, and a commer-

cial polymerase (AccuPrime™ Taq DNA Polymerase

High Fidelity; Invitrogen Inc., Carlsbad, CA, USA). The

PCR products were then purified and sequenced. Finally,

the genomic reporter insertion sites were identified by

similarity searches using the sequence analysis tool iMap-

per [85]. The identification of the insertion sites of the

selected clones was confirmed using a high-throughput

splinkerette-PCR method [86], allowing the analyses of

hundreds of clones. This work will be described in details

elsewhere.

For characterization of clones and analysis of treatment

effects (see below), flow-cytometry analyses were per-

formed (FACSCanto II; Becton-Dickinson) on cells extem-

poraneously pelleted and resuspended in Dulbecco’s

phosphate-buffered saline 1× solution (Gibco-BRL). Each

sample was analyzed using an acquisition of 50,000 events

(gated on living cells), and the positive fluorescence thresh-

old was fixed using non-transfected cells. Possible variabil-

ity resulting from flow-cytometer calibration was taken

into account by systematically analyzing flow-calibration

particles (SPHERO™ Rainbow; Spherotech Inc., Lake

Forest, IL, USA), as a calibration reference.

Non-transfected cells were used to measure 6C2 native

autofluorescence, and the difference between the

fluorescence of transfected and non-transfected ones was

used as an indicator of the transgene activity (note that

autofluorescence was also systematically added to the

model’s output to compute the distribution distance

scores).

For each clone, two indicators were systematically used:

MFI (mean fluorescence intensity) and NV (the variance

divided by the square mean).

For a given cell, the measured fluorescence f (from the

flow cytometer) is f = ft + fa; that is, the sum of the true

fluorescence ft (coming from the reporter proteins) and

the autofluorescence fa (coming from the rest of the cell).

The autofluorescence is not a constant, but has a distribu-

tion that is obtained using non-transfected cells. The two

first moments of f read simply as

and

Hence, with MFI and NV being the mean and normal-

ized variance of the true fluorescence, we get:

and

Finally, to compare the theoretical distributions

obtained from simulations (which only included the

reporter fluorescence) with those obtained from experi-

ments (which also included the autofluorescence), the

model’s output was first combined with the experimental

autofluorescence. This was carried out by summing each

simulation result with the value of a randomly selected

cell from the autofluorescence distribution. The resulting

distribution was the convolution between the theoretical

and the autofluorescence distributions, and was then

compared with the experimental distributions using a

Kolmogorov-Smirnov test.

Determination of mCherry mRNA and protein degradation

rates

To determine the mCherry mRNA degradation rate, the

mRNA concentration was estimated using quantitative

reverse transcription (qRT)-PCR after transcription inac-

tivation was achieved using actinomycin D treatment.

Two clones (C5 and C11) were treated, in duplicate, for

0, 60, 124, 244 and 488 minutes with a final concentra-

tion of 10 µg/ml actinomycin D (A9415; Sigma-Aldrich),
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before extracting the mRNA after the instructions of

RNeasy® Plus Mini Kit (Qiagen Inc., Valencia, CA, USA).

To prepare the real-time PCR assay, 1 µg of total RNA

from each sample was reversed transcribed using the

SuperScript™ III First-Strand Synthesis System for RT-

PCR (Invitrogen Inc.) in the presence of random hexam-

ers. Quantification of mRNA levels by real-time PCR was

performed in 96-well plates using a real-time PCR system

(LightCycler 480; Roche Diagnostics, Basel, Switzerland).

The measurement was performed in a final volume of 10

µl of reaction mixture (containing 2.5 µl of cDNA tem-

plate diluted 1 in 5), prepared using a commercial kit

(Light Cycler 480 SYBR Green I Kit; Roche Diagnostics)

in accordance with the manufacturer’s instructions, and

with the primer set at a final concentration of 0.5 µmol/l

(mCher-For: CCACCTACAAGGCCAAGAA, mCher-

Rev: ACTTGTACAGCTCGTCCATG). An internal stan-

dard curve was generated using serial dilutions (from

2000 to 0.02 fg/µl) of purified PCR product. The reac-

tions were initiated by activation of Taq DNA polymer-

ase at 95°C for 5 minutes, followed by 45 three-step

amplification cycles consisting of denaturation at 95°C

for 15 seconds, annealing at 55°C for 15 seconds, and

extension at 72°C for 15 seconds. The fluorescence signal

was measured at the end of each extension step. After the

amplification, a dissociation stage was run to generate a

melting curve for verification of amplification-product spe-

cificity. The crossing point (CP) was determined by the

second derivative maximum method in the LightCycler®

480 software (version 1.5.0). After normalization, taking

into account cellular viability and mRNA quantity used for

the retrotranscription step, the mRNA half-life was deter-

mined by fitting mRNA quantity evolution by a decreased

exponential (least square) method.

To determine the mCherry protein degradation rate,

we used flow cytometry to measure the protein half-life

after translation inactivation using cycloheximide treat-

ment. C5 and C11 clones were treated in duplicate for 0,

16, and 24 hours with a final concentration of 100 µg/µl

cycloheximide (C4859; Sigma-Aldrich), and for each time

point, the fluorescence of the treated cells was measured

by flow cytometry. The autofluorescence component was

removed as explained earlier. The protein half-life was

determined using exponential fit of the fluorescence

mean decrease curve, similarly to the procedure used for

determining the mRNA half-life.

Treatments with chromatin-modifying agents

To analyze the effect of chromatin state on the stochasti-

city of gene expression, clones were treated with TSA, a

histone deacetylase inhibitor (P5026; Sigma-Aldrich) and

5-AzaC, an inhibitor of DNA methylation (A2385; Sigma-

Aldrich). For each clone, kinetic treatment experiments

were performed; clones were treated with 500 nmol/l TSA

or 500 µmol/l 5-AzaC at five time points (0, 8, 24, 32, and

48 hours). For each time point, 1 × 106 cells (for 0, 8, and

24 hours) or 5 × 105 cells (for 32 and 48 hours) were trea-

ted with the relevant drug and characterized by flow

cytometry.

Model description

The two-state model of gene expression represents the

chromatin activity as an ‘on-off’ process specified

through the transition rates kon and koff (respectively

representing the ‘off-on’ transition and the ‘on-off’ tran-

sition). To enable comparison with the experimental

data, a simple model of mRNA and protein dynamics

based on two production/degradation models completed

the model. The production of mRNA was allowed only

in the ‘on’ state (open chromatin) but completely forbid-

den in the ‘off’ state (closed chromatin). The model thus

corresponds to the following equations:

(1)

where,kon is the closed-to-open transition rate, koff is

the open-to-closed transition rate, and kT is the resulting

proportion of the ‘on’ state; R is the number of mRNAs,

r is the mRNA production rate (when chromatin is

open), and is the mRNA degradation rate; P is the

number of mCherry proteins, g is the mCherry produc-

tion rate (per mRNA) and is the mCherry degradation

rate; f is the fluorescence intensity of the cell (after sub-

traction of the autofluorescence) and a, is a linear pro-

portionality coefficient to convert the number of proteins

into arbitrary fluorescence measures.

This model can be simulated with the SSA (see below)

to ascertain the behavior of single cells and eventually to

compute the fluorescence distributions. It can also be

analytically derived to compute the MFI and NV of large

cell populations at steady state.

Analytical derivation of the model

Paulsson proposed an analytic expression of the mean

quantity and NV of protein in the two-state model, as

a function of chromatin-dynamics parameters and

transcription-translation parameters [45]. In the case
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of a single gene and taking into account the parameter

a, Paulsson’s equation gives:

(2)

This equation can be used to express kon and koff as a

function of MFI, NV, and the transcription-translation

parameter sets. Rewriting the equation gives:

(3)

Parametric exploration of the analytical model

Because the clonal populations differed only in their inser-

tion points (that is, their chromatin-dynamics parameters),

equation 3 enabled us to find the clone-specific para-

meters from MFI and NV (measured by flow cytometry)

and the transcription-translation parameters r, , g,

and a. and can be determined experimentally (see

above) but r, g and a remained unknown. We explored a

wide range of these parameters (large enough to include

all biologically relevant values): r = 6.0, 1.0, 0.5, 0.333,

0.25, 0.200, 0.1666, 0.14286, 0.125, 0.111, 0.100, 0.0500,

0.0333, 0.0250, 0.02, 0.01666, 0.01333, 0.0111, 0.00952,

and 0.00833 mRNA/min, corresponding to one mRNA

produced each 1/r = 10 seconds, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

20, 30, 40, and 50 minutes, and 1, 1.25, 1.5, 1.75, and 2

hours, when chromatin is in the open state; g = 1.0, 0.200,

0.100, 0.0333, 0.01667, 0.006667, 0.00333, 0.00222,

0.001666, 0.001333, 0.00111, 0.0008333, 0.00069444,

0.00046296, and 0.0003472 protein/min/mRNA, corre-

sponding to a protein produced each 1/g = 1, 5, 10, and 30

minutes, 1, 2.5, 5, 7.5, 10, 12.5, 15, and 20 hours, and 1,

1.5 and 2 days per mRNA molecule; and a = 0.10, 0.15,

0.50, 1.0, 1.5, 5.0, 10.0, 15.0, 50.0, 100.0, 150.0, and 200.0

arbitrary units.

Exploring all values of r, g and a gave us 3,600 cou-

ples (kon; koff), of which only 1,047 respected the condi-

tion mentioned in equation 3 (kon>0).

Comparison between the analytical model and the

trichostatin A-treated clones

Equation 1 enabled us to compute the mean mRNA

number (R) and the mean protein number (P) at steady

state, from the values of the chromatin-dynamics and

transcription-translation parameters:

(4)

Then, assuming that at t = 0, the cell switches to a new

chromatin dynamics (because of the TSA treatment),

compute R(t), (the evolution of mRNA number), and P(t),

(the evolution of protein number following the TSA treat-

ment) can be computed. If and are the new

chromatin-dynamics parameters induced by the treatment,

the equation is:

(5)

The exact values of and remained

unknown at this stage, but we could simulate the extreme

situation by assuming that, under TSA treatment, the

chromatin is fully open. Analytically, this gives:

(6)

Note that this equation represents an extreme situa-

tion, not the exact TSA influence on chromatin.

Introducing equation 6 into the dynamics of equation 5,

we were able to compute, for a given transcription-transla-

tion parameter set, the maximum rate of protein concen-

tration increase, and thus the maximum increase of

reporter fluorescence. For each parameter set, we com-

pared the predicted fluorescence increase under the

extreme condition of a fully open chromatin. We then

rejected all parameter sets for which the protein number

did not increase sufficiently rapidly to account for the

fluorescence increase measured experimentally during

TSA treatment.

Simulation of the model

The model can be simulated using an SSA, which is an

exact continuous-time algorithm that enables simula-

tion of chemical-reaction systems [54]. Each simulation

represents one of the possible realizations of the
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system from a specified initial state and for a given

kinetic parameter set (these parameters being here

considered as probabilities). Each realization depends

on a pseudo-random generator, and different realiza-

tions (that is, simulations of different cells issued from

the same clone) can be computed by simply initializing

this random generator with different seeds. The imple-

mentation of the two-state model (equation 1) in the

SSA enables simulation of the entire system dynamics

and visualization of the course of chromatin state,

gene transcription, number of mRNAs, mRNA transla-

tion, number of proteins and, ultimately fluorescence,

in a virtual single cell. By simulating a large number of

such ‘artificial cells’, we were able to simulate ‘virtual

flow-cytometry experiments’ and to compute MFI, NV,

and full distribution for a given parameter set. We

simulated 50,000 virtual cells for 30,000 minutes (a

sufficiently long period to ensure that all cells were at

a steady state, the concentration values being initia-

lized at the theoretical values given by the analytical

model). The fluorescence of each cell was then com-

puted, and the simulated distribution generated

through convolution with the autofluorescence of the

6C2 cells measured experimentally (see above). Simu-

lated distributions were then compared with the

experimental distribution using the Kolmogorov-Smir-

nov test. The quality of each parameter set was then

evaluated (the score of a given parameter set being the

mean Kolmogorov-Smirnov score of each clone). The

best parameter set was thus the one that gave the best

fit for all six clonal populations.

Simulation of trichostatin A treatment in the model

Using the best parameter set, we simulated 50,000 cells of

the two TSA-treated clones C5 and C11 for 30,000 min-

utes. The chromatin-dynamics parameters were then

modified to account for the TSA treatment, and the two

clones were simulated for a further 1,152 minutes (48

hours). For each clones, the simulated distributions were

computed after 8, 24, 32 and 48 hours, and compared

with the experimental distributions using a Kolmogorov-

Smirnov test. The best chromatin-dynamics parameters

( ; ) were those that gave the best mean score

at the four time points. In total, 11 different chromatin-

dynamics values were tested for each clone. Note that,

knowing the MFI value of the treated clones, we could

analytically compute the value (using equation 5).

Taking

(from equation 1), we can use this analytical value to

simplify the parametric exploration.

Additional material

Additional file 1: Table S1. Identification by splinkerette PCR of the

mCherry genomic insertion sites for six 6C2 cellular clones.

Additional file 2: Figure S1. Determination of the mCherry reporter

mRNA and protein half-lives. (A) Quantitative reverse transcription PCR

measurement of mCherry mRNA decay after actinomycin D treatment in

two different clones of the 6C2 cell line. The best-fitting exponential

curve (black line) was found by minimizing least squares (between

exponential curve and biological data). The deduced mCherry mRNA half-

life was 7 hours and 4 minutes (424 minutes). (B) Flow-cytometry

measurement of mCherry protein fluorescence decay after cycloheximide

treatment in two different clones of the 6C2 cell line. The best-fitting

exponential curve (black line) was found by minimizing least squares

(between exponential curve and biological data). The deduced mCherry

protein half-life was 65 hours and 47 minutes (3,947 minutes). For both

parts, ordinates are on a logarithmic scale.

Additional file 3: Figure S2. Exploration of model parameters based

on a comparison of fluorescence distributions and SSA simulations.

This figure is similar to the Figure 4 except that the selected parameter

set had the highest (that is, worst) score (shown as a brown circle in the

upper left part of the figure) of the best scores obtained.

Additional file 4: Table S2. mCherry transcription rates and mRNA

levels for six cellular clones of the 6C2 cell line.

Additional file 5: Figure S3. Model simulation of the perturbation of

chromatin dynamics by TSA treatment. This figure is similar to the

Figure 6 except that the best new chromatin dynamics was computed

from the parameter set which had the highest (that is, worst) score

(shown as a brown circle in the panel (A) of Figure S2 in Additional file

3) of the best scores obtained.
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