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SUMMARY

Although the proteins that read the gene regulatory
code, transcription factors (TFs), have been largely
identified, it is not well known which sequences TFs
can recognize. We have analyzed the sequence-
specific binding of human TFs using high-throughput
SELEX and ChIP sequencing. A total of 830 binding
profiles were obtained, describing 239 distinctly
different binding specificities. The models represent
the majority of human TFs, approximately doubling
the coverage compared to existing systematic
studies. Our results reveal additional specificity
determinants for a large number of factors for which
a partial specificity was known, including a com-
monly observed A- or T-rich stretch that flanks the
core motifs. Global analysis of the data revealed
that homodimer orientation and spacing prefer-
ences, and base-stacking interactions, have a larger
role in TF-DNA binding than previously appreciated.
We further describe a binding model incorporating
these features that is required to understand binding
of TFs to DNA.

INTRODUCTION

Understanding of transcriptional networks that control animal

development as well as physiological and pathological pro-

cesses requires the cataloging of target genes of each tran-

scription factor (TF) under all possible developmental and

environmental conditions. Approaches identifying central TFs

and their target genes in simple models where environmental

conditions are stable, such as early embryonic development of
sea urchin, C. elegans, and Drosophila, have been successful

(Davidson and Levine, 2008;Walhout, 2011). Similar approaches

can also be applied to analysis of human transcriptional

networks important for particular processes, using methods

such as classical genetics, chromatin immunoprecipitation

followed by sequencing (ChIP-seq), and RNAi (see, for example,

Balaskas et al., 2012; Chen et al., 2008; Chia et al., 2010).

However, due to the large number of TFs (>1,000; Vaquerizas

et al., 2009), cell types, and environmental states, exhaustive

application of such approaches to understand human transcrip-

tional regulation is not feasible.

Furthermore, observing where TFs bind in the genome does

not explain why they bind there. To understand TF binding, it is

necessary to develop a model that is based on biochemical prin-

ciples of affinity andmass action (e.g., Hallikas et al., 2006; Segal

et al., 2008). Such a model would allow reading of the regulatory

genetic code, and prediction of gene expression based on

sequence. It would also be very important for personalizedmedi-

cine because it would allow prediction of the effects of previously

unknown variants or mutations on gene expression and disease

susceptibility (Tuupanen et al., 2009). The parameters of such

a model include the initial concentrations and the quantitative

binding specificities of DNA-binding proteins such as histones

(Kaplan et al., 2009) and all TFs encoded by the human genome.

A binding specificity model for a TF should describe its affinity

toward all possible DNA sequences. By assuming that each

TF-DNA base interaction is independent (Benos et al., 2002;

Roulet et al., 2002), TF-binding specificity can be expressed as

a position weight matrix (PWM), which describes the effect of

each base on binding separately. Due to the low resolution of

most existing data (Jolma and Taipale, 2011), it is not clear

how generally applicable this model is (Badis et al., 2009; Zhao

and Stormo, 2011).

Despite the central importance of transcriptional regulation in

development and disease, very little work has concentrated on
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analysis of binding specificities of human TFs. Previous system-

atic studies have concentrated on specificities of TFs from

common model organisms, including yeast, C. elegans,

Drosophila, and mouse (Badis et al., 2009; Berger et al., 2008;

Grove et al., 2009; Noyes et al., 2008). In general, they have

analyzed bacterially expressed TF-DNA-binding domains

(DBDs), with very few studies analyzing full-length TFs.

In this work, we have systematically analyzed specificities of

most human TFs using a high-throughput SELEX (HT-SELEX)

(Jolma et al., 2010; Jolma and Taipale, 2011; Oliphant et al.,

1989; Tuerk and Gold, 1990). Comparison of 79 pairs of experi-

ments for full-length TFs and their DBDs revealed that in general,

the DBD defines the primary DNA-binding specificity. Analysis of

the data revealed that the vast majority of interactions that occur

between a TF and individual DNA bases are independent of each

other. However, strong base interdependencies were observed

in a stretch of three to five A or T residues flanking the core

binding site in multiple TF classes, consistent with proposed

shape-based recognition of DNA (Rohs et al., 2010). Adjacent

bases also deviated more from the independent model than

bases that were farther apart, indicating that base-stacking

interactions have a larger role in TF-DNA binding than what

has been previously appreciated. We also commonly observed

formation of dimers, with strong orientation and spacing prefer-

ences. These preferences could be used to further classify TF

subfamilies that had identical primary specificities. We show

that models incorporating adjacent dinucleotides and dimer

spacing and orientation preferences improve modeling of TF

binding to DNA and that the dimer model can be generalized

to analyze large heteromeric TF-DNA complexes.

RESULTS

Genome-Scale TF-DNA-Binding Specificity Assay
To determine the binding specificities of mammalian TFs, we

cloned 891 human and 444 mouse DBDs and 984 human full-

length TFs into Gateway recombination vectors and expressed

the corresponding C-terminally tagged proteins in mammalian

cells. As a control, a subset of these proteins was also expressed

in E. coli as N-terminal fusions (see Table S1 available online).

The sequences that the TFs bind to were then determined by

HT-SELEX (Figure 1A). Robust enrichment of specific sequences

was observed for 303 human DBDs, 84 mouse DBDs, and 151

human full-length TFs, representing 411 different TFs (Table

S1). In general, a high fraction of experiments was successful

for most TF families (Table S2). Of the large TF families

comprising more than 30 factors, two had a low success rate:

high-mobility group (HMG), and C2H2 zinc finger proteins. The

results are consistent with many HMG proteins not binding

DNA sequence specifically (Stros et al., 2007) and with earlier

observations that many C2H2 zinc finger proteins do not bind

specific DNA sequences in protein-binding microarray (PBM)

experiments (T.R.H., unpublished data). C2H2 domains are

also known to be used for other purposes than DNA binding,

even in proteins that also contain DNA-binding C2H2 zinc fingers

(Brayer and Segal, 2008; Brown, 2005).

To determine primary binding specificities for the factors, we

built a PWM from enriched subsequences using a multinomial
328 Cell 152, 327–339, January 17, 2013 ª2013 Elsevier Inc.
method we have described previously (Jolma et al., 2010; Fig-

ure 1B; Table S3). Matrices were corrected for nonspecific

DNA carryover. The matrices generated using this method

from early SELEX cycles were generally similar to those obtained

by a ratio method, where normalized subsequence counts

observed in a given cycle are divided by normalized counts

observed in the previous cycle (Figure 1C).

We have previously established that many TFs that bind DNA

as monomers can also bind as homodimers and that the dimers

display strong orientation and spacing preferences (Jolma et al.,

2010). To analyze homodimeric binding globally, we analyzed

the enriched sequences to identify TFs that bound to two

similar sites within a single DNA fragment. The cases where

the dimers displayed clear orientation and spacing preferences

were included in the set of PWMs analyzed further. In total,

we obtained 830 binding profiles for human and mouse TFs

(Table S3).

Full-Length TFs and Isolated DBDs Bind Similar
Sequences
We next analyzed the similarity between the obtained binding

specificities for full-length proteins and the corresponding

profiles for DBDs using the minimal Kullback-Leibler divergence

(KL) method (Wei et al., 2010). Analysis of profiles for all the 79

human TFs for which both full-length and DBD experiments

were successful revealed that in the vast majority of cases, the

full-length and DBD PWMswere very similar (KL <2). Most differ-

ences between the models were minor (Figure 1D), being gener-

ally of similar magnitude than those observed between replicate

experiments (KL, 0.51 ± 0.32). The only clear difference identified

affected a homodimeric site for the ETS factor ELK1 (Figure 1D).

These results suggest that in most cases, analysis of DBDs is

sufficient for determination of TF-binding specificities.

Analysis of Model Width and Coverage
Analysis of the length and information content of the PWMs re-

vealed that on average, they were 13 bp long and contained

15.6 bits of information (Figure 2A; data not shown). There was

a clear correlation between width of the binding profile and its

information content (data not shown), and clear decrease of

information content per base was not observed in longer motifs.

We next determined the fraction of high-confidence human

TFs that are covered by models in our data and in existing data-

bases, including a literature-curated set (JASPAR; Portales-Ca-

samar et al., 2010), and a collection based on a high-throughput

approach (PBMs; Badis et al., 2009; Berger et al., 2008). This

analysis revealed that our data covered approximately two times

larger number of human TFs than PBMs, the largest currently

available systematic data set (Figure 2B). Because PBM anal-

yses have focused mostly on mouse TFs, we also compared

coverage based on protein similarity, again revealing that our

data set is clearly the largest collection of mouse or human

TFs, covering more than 50% of all high-confidence TFs at

a 90% similarity threshold (Figure 2B).

To analyze the differences between the PBM and SELEX data

in more detail, we compared separately the number of TFs

(mouse and human) belonging to different structural TF families.

For eight TF families that primarily bind DNA as monomers,



Figure 1. Analysis of TF-Binding Specificity

(A) Genome-Scale HT-SELEX pipeline.

(B) PWM generation using the multinomial algo-

rithm. Multinomial model is generated by counting

the occurrences of each base at a given position

when all other bases exactly match a seed se-

quence. Note that simple alignment generates

an excessively stringent model, resembling the

consensus even when random sequences (input

library) are analyzed.

(C) Comparison between binding profiles for ELF3

DBD obtained using background subtraction (left)

and count ratio (right) methods. Note that models

generated using background subtraction are too

loose at cycle 1 (c1) due to saturation of high-

affinity sites and that by cycle 4 (c4), they become

excessively stringent due to exponential enrich-

ment. However, at cycles 2 and 3 (underlined), the

background subtraction model is similar to a ratio

model (right, the cycles between which the ratio

was calculated are also indicated). Note that the

choice of SELEX cycle has the largest effect on

bases that have moderate effect on binding

(boxes).

(D) Binding profiles obtained using full-length

proteins are very similar to those obtained using

the corresponding DBDs. Bars indicate divergence

of 1 and divergence between PWMs from replicate

experiments ±SD. Dendrogram shows all PWM

models for the same protein in DBD (orange) and

full-length (blue) form. Black arcs connect a DBD

model to its corresponding full-length model, and

red lines indicate the dendrogram branchpoint.

Some secondary PWM models (gray) were

generated only for a DBD or full-length protein due

to weaker enrichment in the other sample. Logos

highlight the only clear difference found between

DBD and full-length models.

See also Figure S4 and Table S1.
a similar number of models were described (Figure 2C).

However, for the remaining 23 families that bind DNA mostly

as dimers ormultimers in HT-SELEX, dramatically higher number

of models were obtained (Figure 2D). These differences appear

to be related to the fact that PBMs contain all 10 bp sequences,

whereas 14–40 bp random sequences are used in HT-SELEX.

This results in either failure of PBM analyses to identify long

binding sequences or recovery of a partial specificity or a half-

site of a dimer (Figures 2E and 2F; Figure S1).

Different Structural Families of TFs Have Clearly
Distinct Specificities
Wenext generated a networkwhere TFswere connected to each

other if their HT-SELEX PWMmodels were similar (Figure 3; see
Cell 152, 327–339
Experimental Procedures). In this anal-

ysis, the different TF structural families

separated into distinct subnetworks (Fig-

ure 3; for larger images and logos, see

Data S1). Only three exceptions were

found: GMEB2, SNAI2, and CPEB1. In

each case, a single factor from one struc-
tural family associated with a group of factors from another

family (Figure 3).

Because many of the PWMs were similar, we used a mini-

mum dominating set of the network to identify 239 PWMs

that could describe the entire set of profiles. Several large

groups of TFs that could be represented by a single PWM

were identified, including ETS class I proteins, and subsets of

homeodomain and bHLH proteins that bound to canonical

TAATTA and CACGTG sites, respectively (Figure 3). The ob-

tained PWMs for the entire set of 146 homeodomain, 39 bHLH,

and 24 ETS proteins could be described by only 53, 9, and 10

representative models, respectively. In contrast, 42 distinct

profiles were required to describe 53 C2H2 zinc finger proteins.

Many of the zinc finger models, including those for Zfp652,
, January 17, 2013 ª2013 Elsevier Inc. 329



Figure 2. Comparison of Coverage of TFs

(A) Histogram showing the distribution of PWMmodel widths. Note that TFs prefer even (blue) over odd (red) widths due to palindromic sites and that a width of

10 bp corresponding to a single turn of a DNA helix is the most common. Note also that the specificity of most TFs extends beyond 10 bp.

(B) Coverage of human high-confidence TFs by JASPAR CORE (left bars), PBM (middle bars), and HT-SELEX (right bars) at indicated thresholds.

(C)NumberofTFs forwhichamodel hasbeenderivedusingPBMorHT-SELEX.Colors indicatedifferentstructural TF families thatbindDNAprimarilyasmonomers.

(legend continued on next page)
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ZNF410/APA1, ZKSCAN3/ZNF306, ZNF282, ZNF232, ZBTB49/

ZNF509, ZNF524, and ZNF713, that we identify here were

dissimilar to any model described previously (Data S1).

We also generated a similar network that included also exist-

ing literature curated and PBM data on human and mouse TF

specificities (Figure S2). This analysis revealed that our data

were in broad agreement with the more limited information on

TF-binding specificities that had been described before. Most

clear differences could be explained by the lower resolution of

the previously used methods (Figure S1A), shorter sequence

length analyzed (Figure S1B), or issues related to the conversion

of raw PBM data into PWM form (Figure S1C).

Conservation of Binding Specificities
Analysis of HT-SELEX-derived PWMs revealed that in all tested

cases, themouse and human ortholog-binding specificities were

similar (Figure 3, compare triangles and circles). The lack of

differences was not due to our inability to detect them because

we did identify a difference that was caused by amissensemuta-

tion in our Egr1 clone. The mutation affects a DNA-contacting

residue but is not found in mouse reference genome or SNPs,

indicating that the mutation is either private or introduced in

cloning (Data S1; Table S1).

Classification of TFs Based on Their DNA-Binding
Specificities
We have previously classified the ETS family of TFs into four

classes based on two independent analyses of their binding

preferences (Wei et al., 2010). Our SELEX analysis of 24 mem-

bers of the 27 ETS family TFs corroborates these four classes

(Figure 4A). However, even within this well-studied group of

factors, we could identify additional novel specificity determi-

nants for three out of the four classes (Figure 4A; Data S1).

We could also identify other families that displayed clear one-

to-one relationships between proteins and binding specificity

models. For example, five classes of GLI-like C2H2 zinc fingers,

four main classes of basic-helix-loop-helix (bHLH) proteins, four

classes of PAX proteins, and two classes each of E2Fs, HSFs,

MADS proteins, CUT+homeodomains, and SP/KLF/EGR C2H2

zinc fingers could be clearly identified (Figure 3; Data S1).

Classification of TFs Based on Dimer Spacing and
Orientation
Dimer orientation and spacing preferences could be used to

further classify some factors that showed similar monomer-

binding specificities. For example, the ETS class I factors ERG,

ETS1, and ELK1 preferred to bind to different homodimeric sites

(Figure 4A; see also Babayeva et al., 2010; Jolma et al., 2010;

Lamber et al., 2008). Similarly, both T box factors and forkhead

proteins displayed one type of monomer specificity but seven
(D) Number of TFs for which a model has been derived using PBM or HT-SELEX. C

or multimers in HT-SELEX.

(E) PBM identifies only partial specificities for TFs with long binding sites. HT-SEL

shown. Box indicates sequence that is misaligned to generate a palindromic PB

(F) PBM identifies only half-sites for TFs that bind DNA as homodimers.

Insets in (E) and (F) are ROC curves showing enrichment of specific ChIP-seq pe

See also Figure S1 and Table S2.
and three distinct dimeric spacing/orientation preferences,

respectively (Figure 4B; Data S1).

In some cases, both spacing and orientation preferences, and

the monomer sites/half-sites, could vary. For example, RHD

family factors could be classified to NFAT and NF-kB subgroups

based on half-site specificity, and the NFAT subgroup further

diverged to two distinct orientation and spacing preference

groups (Data S1). Similarly, nuclear receptors could be classified

to 12 groups, based on eight different half-site specificities and

five different spacing groups within factors that specifically

bound one type of half-site (Data S1). Homeodomains could

also be subclassified based onmonomer specificity and spacing

and orientation preferences (Figure 3; Data S1).

For posterior homeodomains (Data S1), POU+homeodomains

(Data S1), and bZIP proteins (Figure 4C; Data S1), classifica-

tionwasmore complex because factors shared partially overlap-

ping sites. For example, many bZIP proteins could bind to two

distinct sites and be classified based on the sets of sites that

they bind to. Their specificities were arranged in a tiled pattern,

based on both overlapping half-site and spacing preferences

(Figure 4C).

Independence of DNA Base Positions in TF Binding
To analyze how independently different base pairs bind to TFs,

we compared observed counts of nucleotide pairs to the corre-

sponding nucleotide pair counts expected based on a PWM

(Figure 5A). Plotting of the observed counts against the expected

counts revealed that the PWM was a good model for the vast

majority of position pairs (Figure 5B).

Furthermore, calculation of the correlation between the nucle-

otide pair counts observed and predicted from the PWM for each

pair of bases in all TF models revealed that only 0.9% of all pairs

had a correlation coefficient that was lower than 0.9 (data not

shown). PWMwas particularly effective at modeling bases sepa-

rated by more than three bases. Bases that were closer together

displayed a somewhat larger deviation from the PWM model,

with the largest difference observed for directly adjacent bases,

with 5% of counts deviating from expected by more than 2-fold

(Figure 5C; data not shown). These results indicate that TFs in

general bind to base pairs independently of each other and

that the strongest deviations from this model affect adjacent

bases.

Deviations from the PWM Model
Although the PWM model explained pairs of bases well in most

cases, some pairs displayed more than 5-fold deviations (ex-

pected/observed) from the PWM-based predictions. Such pairs

were identified in several structural TF families.

The most striking case was SOX proteins. All SOX proteins

bound to head-to-head pseudopalindromic sites (Data S1),
olors indicate different structural TF families that bind DNA primarily as dimers

EX, PBM primary (PBM 1), PBM secondary (PBM 2), and ChIP-seq models are

M site that is inconsistent with SELEX.

aks by the different in vitro PWMs.
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Figure 3. Network Representation of the Similarity of the Obtained PWMs

Diamonds indicate TF genes, and other nodes indicate individual PWMs; colors indicate TF family (bottom right). Models for human full-length TFs (large circles),

DBDs (small circles), andmouse DBDs (triangles) are shown; representativemodels are indicated by black outline. Edges are drawn between a TF and itsmodels,

and between similar models. Subnetworks are named by family; where necessary, subfamilies are indicated with numbers or partial consensus sequences

(orange typeface). Note that TFs cluster almost exclusively with other TFs of the same family (boxes; box in dotted line indicates that only some PAX proteins

contain homeodomain). The three cases where a member of a class is included in a subnetwork composed of members of another class are indicated by red

typeface. Fraction of TFs with models (top left of each box), total number of models (top right, above), and number of representative models (below) are also

shown for each family. The three largest groups of models that are very similar to each other are circled (dotted line). See also Figure S2, Table S3, and Data S1.
which displayed an extremely strong correlation (>100-fold

difference) between a dinucleotide that was present in one

half-site with the corresponding dinucleotide in the other half-

site, even though they were 9 or 10 bp apart. This effect is prob-

ably not mediated by a protein dimer but by base pairing in

a stem loop formed from single-stranded DNA (Figure S1D).

We could further identify four different sources of correlations

between bases. The first two types were associated with dimeric
332 Cell 152, 327–339, January 17, 2013 ª2013 Elsevier Inc.
binding. The first was characterized by asymmetric binding of

monomers in a tightly packed dimer (e.g., FLI1, MEIS2, PKNOX2)

and could be modeled with a PWM that is nonpalindromic (Fig-

ure S3). The second type was due to the ability of some factors

to bind to two distinct half-sites (e.g., HNF4A, many bZIP factors;

data not shown).

The third type of base pair interdependency was linked to DNA

binding by the homeodomain recognition helix. Strong



Figure 4. Classification of TFs Based on Their Binding Profiles

(A) ETS factors. Network analysis similar to that shown in Figure 3 indicates that HT-SELEX can accurately identify the four known ETS subclasses (indicated by

colored ovals). Additional specificity determinants in classes II, III, and IV are indicated by brown brackets, and a novel dimer in ETV6 (class II) and two novel

putative dimers in SPDEF (class IV) are indicated by brown dotted lines. Box indicates three different homodimeric sites within class I. Logos for representative

PWM models are shown; green and gray arrows indicate GGA(A/T) and AGAA sequences, respectively.

(B) Classification of T box TFs based on dimer orientation and spacing. Left panel shows amino acid similarity dendrogram of T box DBDs. TFs for which models

were not obtained are in gray. Middle panel shows heatmap displaying spacing and orientation (arrows) preferences of the enrichedGGTGTG subsequences (red

indicates max counts; green indicates 0); scale represents distances between the subsequence starting points. Right panel shows PWM describing most en-

riched dimeric binding site for each TF.

(C) A subset of bZIP TFs recognizes two types of target sites in a tiled pattern, covering four site types. Arrows above the logos indicate half-sites; black specifies

TTAC, blue designates ATGAC, and red showsGCCAC. Note that JDP2, CREB3, XBP1, CREB3L1, and Creb3l2 each can bind to two different site types, forming

a tiled pattern ranging from TRE element (top) to G box. Most TF nodes in (A) and (C) are omitted for clarity; for details, see Data S1.
correlations between adjacent bases were observed for

BARHL2 (Figure 5A). Similarly, all posterior homeodomains

(HOX9–HOX13) displayed strong correlations between bases

located 50 of the shared TAAAA subsequence (Figure 6A).

The fourth type of binding poorly explained by a PWMwas the

flanking of many TF core sequences with a stretch of three to five

A or T bases (Figure 6B). Such sequences are predicted to

narrow the minor groove of DNA, a feature that has been linked

to shape-based DNA recognition (Rohs et al., 2010). Consis-

tently, sequences favoring a narrow minor groove such as TTT

or AAA were enriched much more than combinations of the

same bases that result in much wider minor groove (Figure 6C;

data not shown). Such A or T stretches also affected TF-DNA
binding in vivo; core sequences enriched in ChIP-seq peaks

for SPI1 (Wei et al., 2010), MAFG, and E2F7 (Figure 6B) were

flanked with multiple As.

Models that Take into Account Deviations from the PWM
Model
Given that adjacent nucleotides can affect each others’ binding

to a TF, and that many TFs bind to sequences that cannot be

modeled by a standard mononucleotide model (PWM, a zero-

order Markov model), we next tested whether the A stretch

sequences could be explained by a model that takes into

account adjacent bases. We first generated an adjacent dinucle-

otide model (ADM) for E2F3 from dinucleotide pair data. The
Cell 152, 327–339, January 17, 2013 ª2013 Elsevier Inc. 333



Figure 5. Global Analysis of Base Interdependency

(A) Analysis of interdependence of base positions. Nucleotide pair counts were generated for each pair of bases in such a way that bases that were not counted

exactly matched the seed (left). Observed counts for each pair were then compared to those expected from mononucleotide distribution (bottom). Note that

mononucleotide distribution cannot be used to generate accurate nucleotide pair counts for BARHL2-binding positions 4 and 5 (heatmaps; black is low, and

green is high) due to a preferential binding of BARHL2 to taaACg or taaTTg (red) over taaATg and taaTCg (blue).

(B) In general, bases bind to TFs independently of each other. A density plot of counts observed versus counts expected from a PWMmodel for all possible pairs

of base positions within all of the models generated in this study. Density (z axis; indicated both by height and by colors for clarity) of points in the x-y plane (log10
counts) is extremely concentrated at the diagonal, indicating that the vast majority of positions do not materially affect binding at other positions. Inset shows

heatmap of the same data.

(C) A boxplot showing log2 fold change of count expected from a PWMmodel over observed count as a function of distance of the analyzed bases indicates that

adjacent bases have stronger effect on each other than bases that are farther apart. Boxes indicate the middle quartiles, separated by median line. Whiskers

indicate last values within 1.5 times the interquartile range from the box.
ADM is a series of first-order Markov chains that allows scoring

of k-mers that are shorter than the model itself (Table S4). Plot-

ting of the observed 10-mer counts for E2F3 against those ex-

pected from both PWM and ADMs revealed that the ADM was

better at modeling the enrichment of 10-mer subsequences

than a standard PWM (Figures 7A and 7B).

We next tested whether orientation and spacing preference

matrix could be used to improve prediction of sequences en-

riched by TBX20, a factor that binds to a dimeric site where

the same monomer is found in multiple different orientation

and spacing configurations. For this purpose, we generated

expected-observed plots for all possible combinations of two

4-mers with gaps of different length between them (gapped

8-mers). A model that incorporated spacing and orientation

preferences (Table S4) described enriched gapped 8-mers

much better (R2 = 0.67 compared to 0.44) than a simple PWM

(Figures 7C and 7D).

DISCUSSION

We report here high-resolution DNA-binding specificity for

a large fraction of human TFs. Given the fact that proteins

related in amino acid sequence generally bind to similar sites,

we estimate that this resource represents the majority of all

human TF-binding specificities. We also identify additional

determinants of specificity for many factors for which a partial

binding specificity was known before. The models described

here are generated from a large number of sequences
334 Cell 152, 327–339, January 17, 2013 ª2013 Elsevier Inc.
(average >7,000) and are of higher resolution than the existing

SELEX-derived PWM models, which are affected by much

higher Poisson error due to the low number of sequences

analyzed (mostly 10–50).

Prior to this work, very few experiments have addressed

binding specificities of human full-length TFs. Out of the 151

human full-length TFs that we obtained profiles for, previous

high-resolution binding data exist only for ETS1 and GABPA

(Wei et al., 2010). Of the 303 human DBDs we model here, 22

have been profiled previously (Portales-Casamar et al., 2010).

Previous data for 78 and 311 TFs exist from human or mouse,

respectively (Badis et al., 2009; Berger et al., 2008; Wei et al.,

2010). Of all the 830 PWMs, 406 are similar to 1 or more of the

500 PWMs described before for homologous TFs; the remaining

424 profiles, representing 228 TFs, were different from any

model that has been described before (Figure S2; SSTAT covari-

ance <1.5 3 10�5).

Much of the existing data are derived using PBMs containing

all possible 10 bp subsequences (Berger et al., 2006). Our

results are generally in good agreement with the PBM data

for TFs that bind to short sites. However, we find here that

more than half of all binding models for TFs are >10 bp in length,

suggesting that specificity of many TFs cannot be fully deter-

mined using PBMs. Consistently with this, the coverage of

PBM models is very low for families that bind to DNA as dimers,

and in many cases, the reported PBM model describes partial

specificity or half-site. Many dimeric sites identified by HT-

SELEX in this work had been identified before and/or were



Figure 6. Examples of Base Pair Interde-

pendencies in TF-DNA Binding

(A) Posterior homeodomains exhibit strong corre-

lations between bound positions. Diamonds

represent the indicated posterior homeodomain

proteins, and circles represent enriched 9-mer

sequences (circles, first four bases shown, last five

bases are TAAAA). Edges are drawn between k-

mer nodes if their Hamming distance is 1, and

between a protein and a k-mer node if the k-mer is

enriched by the protein. Edges between protein

and k-mer nodes are colored for clarity, and their

thickness represents the extent of the enrichment.

Logos indicate two different PWM models for

HOXB13 that are built using nonoverlapping

sequences (blue and red).

(B) A stretch of A or T bases (box, red line above

logos) is commonly observed adjacent to core TF-

binding sites (blue line). Models generated using

ChIP-seq (short) followed by motif discovery are

shown below HT-SELEX-generated models (tall).

SPI1 motif is from Wei et al. (2010).

(C) The bases are not independently bound

but, instead, display a preference for a stretch of

either A or T. Expected-observed plot for E2F3

describing 4-mers that precede the sequence

GGCGCC. Note that AAA(T) and TTT(T) are

strongly preferred over combinations such as

AAT(T). The (T) is part of the E2F3 core. Bottom

view shows binding motifs (middle) representing

the three enriched combinations of core and

flanking sequences and their relative frequencies

(right).

See also Figure S3.
validated by ChIP-seq (Figure S4), indicating that HT-SELEX

allows analysis of multimeric binding sites spanning 20 bp or

more, which is beyond the capacity of any unbiased array

technology.

TF-DNA-Binding Specificity Is Determined by the DBD
Some previous studies analyzing individual proteins have

found that a TF and its isolated DBD bind to similar sequences

(see, for example, Badis et al., 2009; Wei et al., 2010). On the

other hand, some reports have found differences even

between splicing variants of the same TF (Giguère et al.,

1995). Most in vitro analyses of TF binding to date have

analyzed specificity of isolated DBDs, whereas in vivo methods
Cell 152, 327–339
such as ChIP-seq have necessarily

studied full-length TFs. Based on these

results, it has not been possible to

determine whether full-length TFs bind

to different sites than isolated DBDs

because observed differences in binding

could be due to the differences in

protein length or experimental method.

Our analysis of 79 pairs of full-length

TFs and DBDs revealed that the primary

binding specificity of TFs is defined by

the DBD. We found only one case,
ELK1, where the specificity of full-length TF and DBD was

clearly different.

Conservation of Binding Specificities
TF-binding specificities evolve very slowly (see, for example,

Amoutzias et al., 2007; Bohmann et al., 1987; Struhl, 1987).

Nevertheless, some examples of divergence of specificity exist

in the literature (Solano et al., 1995), and systematic analysis of

the divergence of specificities using current data has been

hampered by the fact that the observed differences could be

due to the different methods used to study orthologous TFs.

Despite the morphological differences between mouse and

human, we did not observe any clear cases where the binding
, January 17, 2013 ª2013 Elsevier Inc. 335



Figure 7. Comparison of Models for TF

Binding

(A and B) ADM (B) more accurately describes

enrichment of 10 bp subsequences by E2F3 than

a conventional PWM (A). In adjacent dinucleotide

logo (B), mononucleotide positions that do not

explain dinucleotide counts are separated and

black edges drawn to indicate the preferred dinu-

cleotides. Gray edges represent dinucleotides that

are common but not overrepresented. Thickness

of the edges represents the frequency of the indi-

cated dinucleotide; very thin edges are not drawn

for clarity.

(C and D) A model consisting of a monomer PWM

(canonical monomer target of T box indicated by

red arrow) and a spacing and orientation matrix (D)

can explain enrichment of gapped 8-mers (4-mer-

gap-4-mer) much better than a simple monomer

PWM model (C). Heatmap indicates preferred

orientations and spacings of the monomers; scale

indicates difference in monomer start positions.

Red lines indicate least-squares fit; correlation

coefficients are also shown. Plots in all panels have

logarithmic axes to facilitate visualization; the R2

values are from the corresponding linear data.

See also Table S4.
specificity has changed between human and mouse. However,

we did observe several cases where dimer orientation and

spacing preferences were divergent between paralogous TFs,

suggesting that dimer orientation and spacing preferences

evolve faster than primary binding specificities.

Classification of TFs Based on Binding Specificities
Clustering of TFs based on their binding specificities classified

them to the known structural families. Many TF families could

also be further subclassified based on more subtle differences

in specificity within the families (Figure 3) or on a combination

of monomer specificity and spacing and orientation preferences.

For example, nuclear receptors are known to bind to dimeric

sites that vary in both specificity and spacing of the half-sites

(Pardee et al., 2011). Clear classification of nuclear receptors

to different specificity groups has, however, not been accom-

plished. The systematic analysis described here allowed

classification of nuclear receptors to 12 classes based on

a combination of half-site and dimer orientation and spacing

preferences. Similarly, although all T box proteins bound to iden-
336 Cell 152, 327–339, January 17, 2013 ª2013 Elsevier Inc.
tical half-sites, seven different classes

could be identified based on spacing

and orientation preferences (Figure 4B).

ETS class I proteins also displayed three

distinct dimer orientations and spacings

(Figure 4A).

A more complex classification of

factors was necessary for bZIP proteins,

which are known to vary in both speci-

ficity and spacing of the half-sites

(Amoutzias et al., 2007; Badis et al.,

2009; Kim and Struhl, 1995). We find
here that many bZIP proteins bind to two sites and that the spec-

ificities form a tiled pattern, where in many cases, two factors

shared one site and also each bound to another separate site.

Such a tiled organization of TF specificity allows a complex

control of target genes based on the expression and activity of

the particular bZIP factors present in a given cell.

Multiple Binding Modes
The large number of selected sequences, and the large number

of factors studied, allowed us also to perform a global genome-

wide analysis of common features that are important for recog-

nition of DNA by TFs. It has previously been suggested that

many TFs recognize distinctly different sequences (Badis et al.,

2009), but this view is controversial (Zhao and Stormo, 2011;

Morris et al., 2011). Analysis of our data reveals that multiple

PWM models are not needed to explain high-affinity binding of

most TFs to DNA. However, multiple binding modes exist for

many factors (e.g., bZIP proteins), and most such cases are

due to the ability of a factor to bind to both a monomeric and

a dimeric site, and/or multiple different dimeric configurations.



Structure-Based DNA Recognition
It is well established that TFs have two primary ways to interact

with DNA: a non-sequence-specific interaction with the back-

bone, and a sequence-specific interaction with the bases (von

Hippel and Berg, 1989). The latter is often linked to direct

hydrogen bonding between specific DNA bases and DBD amino

acids. Most such interactions occur via themajor groove of DNA,

which is often expanded by an insertion of a DBD recognition

helix or loop. A third type of binding that depends on DNA minor

groove shape and confers partial sequence specificity has been

suggested based on analysis of crystal structures of protein-

DNA complexes (Aggarwal et al., 1988; Rohs et al., 2009; Zheng

et al., 1999). We find here that such interactions are indeed very

common in different TF families and determine their effects on

DNA-binding specificity for the first time.

The commonDNA structure-based-bindingmotif is character-

ized by a core-binding sequence of a TF being flanked by

a stretch of either A or T bases. Such interactions are potentially

important in formation of consecutive TF-binding sites in regula-

tory elements. Because this type of recognition of DNA is based

on DNA shape, it is also likely that the base preferences of TFs in

these regions can be affected by DNA shape changes induced

by binding of multiple TFs in close proximity to each other (see

also Slattery et al., 2011). Furthermore, due to the fact that TFs

can read the minor groove without opening the DNA, such inter-

actions may also increase speed by which TFs locate their target

sites (see Elf et al., 2007).

Posterior Homeodomain Proteins and CDX
Wealso identified another type of correlation between bases that

was due to recognition of DNA without hydrogen bonding. All

posterior homeodomain proteins (HOX9–HOX13) bound to two

types of sites in a partially overlapping pattern. These sites could

not be adequately described by a single PWM. Specificities

between paralogous HOX proteins (e.g., HOXA13, HOXB13,

HOXC13, and HOXD13) were similar to each other, but clear

differences were observed between each of HOXs 9, 10, 11,

12, and 13. These differences, combined with proposed latent

differences in anterior HOX specificity (Slattery et al., 2011),

potentially explain the differences in target specificity of the

collinear HOX series.

Interestingly, the parahox CDX proteins that are evolutionarily

related to posterior HOX proteins bound to only one type of site

that was shared by HOX9 and HOX10 (Figure 6A), suggesting

that a partial overlap between the bound sequences has been

specifically selected for. Such a partial overlap is also observed

between zinc fingers and other TFs, and many TFs in the bZIP

family (see above), suggesting that such an arrangement is

a common feature of human transcriptional networks.

Role of Base-Stacking Interactions in TF-DNA Binding
In addition to large deviations from the PWM model described

above, the large number of sequences analyzed allowed us to

identify a general tendency of adjacent bases to affect each

other (Figure 5C). The effect of dinucleotide composition on

DNA structure is well established (Geggier and Vologodskii,

2010), and dinucleotides are commonly used to predict a large

number of properties of DNA, including geometry of the base
pairs and melting temperature (Zheng et al., 2010). No clear

preference toward or away from any given dinucleotide was

found (data not shown), suggesting that TFs do not have

a general preference toward a particular structural feature.

Our results indicate that although the primary interactions

between TF and DNA occur between individual bases and amino

acids, and that independent binding of DNA bases by TFs is

generally a good approximation (Benos et al., 2002; Roulet

et al., 2002), adjacent bases deviate from this assumption in

a manner that is important for quantitative analyses of TF-DNA

binding. Thus, in addition to determining base pair geometry

and structural features of DNA, adjacent dinucleotides play

a role in DNA recognition by TFs. Our results also suggest that

systems-biological models of TF-DNA binding based on dinucle-

otides should perform better in prediction of occupied TF sites

than models based on conventional PWMs.

Computational Modeling of Binding
The binding of TFs to DNA is commonly modeled based on

a PWM that assumes independence of binding of protein to indi-

vidual bases. Several alternative models that do not make this

independence assumption and, instead, use a larger set of

parameters to describe TF-DNA binding have been developed

(see, for example, Agius et al., 2010; Roulet et al., 2000; Sharon

et al., 2008). Based on our observation that adjacent bases

commonly affect each other, and that many TFs bind DNA as

monomers or dimers, we developed here two models for TF

binding that incorporate these features. The first model is

a simple replacement for a PWM that is based on a first-order

Markov chain. This model takes into account the effect of adja-

cent bases and models binding of factors that bind to A or T

stretches significantly better than a conventional PWM.

The second model we developed takes into account the

spacing and orientation preferences of dimeric sites. This

improves models for TFs that bind to DNA both as monomers

and dimers or as multiple different dimers. This model can be

generalized to heterodimers and chains of TFs of arbitrary type.

The advances in modeling TF-DNA interactions, together with

the systematic resource of human TF specificities we describe

here, will enable building of more accurate systems-biological

models of TF-DNA binding and transcription, thus representing

a major step toward decoding of the second, regulatory, genetic

code—the code that determines gene expression based on

genomic sequences.

EXPERIMENTAL PROCEDURES

Cell Culture, Constructs, and Protein Expression

Human LoVo colon carcinoma and human embryonic kidney-derived 293T

(ATCC; CRL-11268) and 293FT cells (Invitrogen; R700-07) were cultured in

DMEM with 10% FBS and antibiotics.

Collection consisting of 984 human full-length TFs and 891 DBDs was

cloned by PCR from Mammalian gene collection, ORFeome, Megaman

cDNA library, or by gene synthesis (Table S1). Another collection composed

of 444 mouse DBDs was generated by PCR from templates described earlier

by Badis et al. (2009) and Berger et al. (2008). Constructs were sequenced

using capillary sequencing (National Public Health Institute, Finland, and

MWG, Germany).

For protein production, cellswere transfected in6-well plates usingpolyethy-

leneimine (25 kDa; Sigma-Aldrich) with cDNAs in pDEST40-Gau-SBP (Jolma
Cell 152, 327–339, January 17, 2013 ª2013 Elsevier Inc. 337



et al., 2010) or pcDNA3.1-3xFLAG, followed by culture for 2 days and lysis in

1%Triton X-100, 150mMNaCl, 50mMTris-Cl (pH 7.5) with protease inhibitors

(cOmpleteEDTA-free;Roche). Cell lysateswere either deep-frozenat�80�Cor

used directly. Expression levels of proteins were monitored by luminescence

(Renilla Luc assay, Promega; EnVision, PerkinElmer). A subset of 17 and 2

DBDs was expressed as N-terminal thioredoxin-hexahistidine or GST fusions

using E. coli, respectively (see Extended Experimental Procedures; Table S1).

ChIP-Seq

ChIP-seq for MAFG (antibody: Santa Cruz Biotechnology; sc-22831 X), MAFK

(Abcam; ab50322), GMEB2 (Abcam; ab50592), GRHL1 (Abcam; ab77762),

HNF1A (Santa Cruz Biotechnology; sc-22840 X), p53 (Santa Cruz Biotech-

nology; sc-135773 X), HNF4A (Santa Cruz Biotechnology; sc-8987), and

E2F7 (Santa Cruz Biotechnology; sc-66870 X) was performed essentially as

described in Tuupanen et al. (2009) and J.Y., M.E., and J. Taipale, unpublished

data. After sequencing (Illumina GAIIX or Hiseq2000), 4 bp index sequences

were removed, and the remaining 33 bp sequences were mapped to the

hg18 human reference genome using BWA: mapping quality threshold 20; 30

bases were trimmed (quality score threshold 20). Duplicate reads were

removed to exclude artifactual peaks and to limit PCR bias. Peaks were

called using MACS (Zhang et al., 2008), and the motifs generated using

MEME, using 61 bp sequences centered on the 500 most enriched peaks

(parameters: -revcomp -dna -minw 5 -maxw 20).

HT-SELEX

Detailed SELEX protocol and data analysis are presented in Extended Exper-

imental Procedures. Plate-based HT-SELEX was performed essentially as

described in Jolma et al. (2010), except that 14, 20, 30, or 40 bp randomized

regions were used. For E. coli-produced proteins, a bead-based SELEX

protocol was used. Selection ligands contained a 5–6 and 0–3 bp bar code

before and after the randomized region, respectively (Table S1).

Raw sequencing data (Illumina GAIIX or Hiseq2000) were binned according

to bar codes and analyzed using IniMotif for quality control (see Jolma et al.,

2010), identification of the most enriched 6–12 bp subsequences, and gener-

ation of primary and secondary PWMmodels. Final PWMmodels were gener-

ated using the multinomial model (Jolma et al., 2010); cycle and seed

sequences are indicated in Table S3.

Nucleotide pairs were counted using the same seed that was used to

generate the matrices. Seed was matched exactly outside of the nucleotide

pair considered, and the instances of each of the 16 nucleotide pairs were

counted. The mononucleotide model describing the nucleotide pairs was

generated from the pair counts, and expected nucleotide pair counts were

then predicted from this model. The adjacent dinucleotide Markov model

(Table S4) was generated by normalizing adjacent nucleotide pair frequencies

to generate initial and conditional probabilities.

The connecting matrix model describes the dependence of dimeric binding

affinity on spacing and orientation of the two binding sites using a cooperative-

binding (cob) table, which has a row for each orientation o (Head-to-Tail, Head-

to-Head, and Tail-to-Tail) and a column for each spacing (distance d = 1, 2,.)

for a previously obtained monomer PWM. The total score for a dimer site is

given as the sum of the PWM scores and the score cobo,d according to the

orientation o and spacing d of the two binding sites of the dimer.

Coverage and Similarities between Binding Specificities

To assess the coverage of the model collection, we retrieved the number of

human high-confidence TFs (category A; Vaquerizas et al., 2009) that have

one or more motifs (HT-SELEX, UniProbe, or JASPAR) for the given TF or

a closely related TF (sequence identity = 1 and similarity >0.9, respectively).

The difference between DBD and full-length protein-derived PWMs was

analyzed using KL distance (Wei et al., 2010) and compared to replicate exper-

iments for six DBDs (TFAP2A, HES5, ESRRA, CREB3L1, ELK1, HOXD12) from

different TF families. For comparison between all profiles, we used SSTAT

(Pape et al., 2008), which differentiates better betweenmonomers and dimers.

A minimum dominating set, consisting of 239 PWMs, was found by transform-

ing the problem into an integer linear-programming problem, which was then

solved optimally using GLPK LP/MIP solver, v.4.43. Detailed computational

methods are described in Extended Experimental Procedures.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Clone Design and Protein Expression
Generally, DBD clones included all DBDs present in the corresponding genes (see Table S1 for details). All DBD clones were

sequenced from both ends and all full-length clones were confirmed by sequencing from at least one end.

For protein expression, clones in Gateway recombination cloning entry vector were transferred to the mammalian protein produc-

tion vectors pDEST40-Gau-SBP (Jolma et al., 2010) or pcDNA3.1-3xFLAG, or the bacterial expression vectors pDEST15-MAGIC

(Berger et al., 2006), pETG20A (Vincentelli et al., 2011) or pETG20A-SBP, where original pETG20A was modified by synthesis and

addition of C-terminally inserting SBP tag (Geneart, Germany for sequence see Table S1).

Mammalian expression is explained in main Experimental Procedures. For bacterial expression, proteins were expressed in

Rosetta 2(DE3)pLysS or C41 strains using auto-inducing ZYP5052 medium or IPTG induction, respectively. IPTG induction was

performed in 250 ml cultures at 1 mM at 16�C overnight. For autoinduction (Vincentelli et al., 2011), overnight culture of bacteria

was inoculated in 1:40 ratio into ZYP5052 medium, and grown for 4 hr at +37�C to followed by protein expression for 18-25 hr

at +17�C. Bacteria were collected by centrifugation and lysed, followed by GST or his-tag purification of the proteins with high

performance glutathione Sepharose or Ni Sepharose 6 Fast Flow (GE healthcare). Glutathione Sepharose beads were used

directly for SELEX. Ni Sepharose purified proteins were eluted with Imidazole and stored in 300 mM NaCl, 125 mM Imidazole,

50% glycerol in 50 mM Tris-Cl, pH 8 at �20�C. Protein expression was verified by SDS-PAGE and Coomassie brilliant blue

staining.

SELEX
In HT-SELEX, an excess of double-stranded DNA fragments containing a randomized region (Table S1) were allowed to bind to

immobilized TFs. Different selection ligands contained constant sequences on both sides that allowed analysis of proteins that

recognize partial sequences on any given ligand. Unbound DNA was removed by rapid washing, after which bound DNA was eluted,

amplified and sequenced. This process was repeated multiple times, and aliquots of the enriched DNA were sequenced at each

cycle. Sequencing is described in Experimental Procedures. Read length for SELEX experiments was longer than the 50 barcode,
variable region and 30 barcode combined.

Plate-based SELEX was performed as described in Jolma et al. (2010), except for the use of a liquid handling workstation (Agilent

Bravo) to perform the assays, using a 7 min wash protocol composed of 25 wash steps with two consecutive BioTek405 CW plate

washers (to avoid contamination). Streptavidin plates (Thermo Scientific 15502) were used for capture of the proteins, except for

CTCF, for which anti-Flag epitope antibody coated plates (Sigma-Aldrich, cat nr. P2983) were used.

Bead-based SELEX was performed using glutathione sepharose, Ni Sepharose 6 Fast Flow or streptavidin agarose beads

(Thermo, cat 20359; see Table S1 for details). Briefly, 100-250 ng of purified soluble protein or beads containing immobilized protein,

100 ng of selection ligand and 83 ng of non specific poly-dIdC oligonucleotide competitor was incubated for 10min in 20 ml volume of

binding buffer (80mMNaCl, 37.5mM Imidazole, 0.7mMMgCl2, 0.35mMEDTA, 0.7mMDTT, 17.8%glycerol in 7mMTris-Cl pH 7.5).

Subsequently, soluble TFs and bound DNA were captured by incubation with 150 ml of Ni Sepharose 6 Fast Flow beads (equilibrated

in 50 mM NaCl, 1 mM MgCl2, 0.5 mM EDTA, 4% Glycerol in 10 mM Tris-Cl, pH 7.5) for 20 min with constant shaking. Beads were

washed by vacuum filtration (Millipore 96-well filter plate MSDVN6550) 12 times with 200 ml of bead equilibration buffer for 5 min

each. Beads were suspended to 200 ml water and stored at �20�C or used directly as a template for PCR.

SELEX Data Analysis
To model TF binding, we generated position weight matrices using a multinomial method that yields profiles that are similar to those

generated using maximum likelihood methods such as BEEML (Zhao et al., 2009). The multinomial method (Figure 1B) was used

because it considers only closely related sequences, and thus allows simple identification of cases where multiple models are

required to explain binding of one TF to DNA. The processing pipeline corrected for non-specific DNA carryover, and resulted in

profiles that were similar to those obtained using ratio-based models.

IniMotif was used to identify experiments that displayed enrichment of specific sequences. Primary model used the most enriched

k-mer as seed, and the secondary model used the most enriched k-mer from the sequence reads that were not used to generate the

primary model. These initial matrices were inspected to rule out problems such as complexity bottlenecks, DNA contamination or

biases due to binding of factors to specific barcode sequences (see Jolma et al., 2010), and to identify experiments where specific

sequences were enriched. After the initial IniMotif analysis, all sequences for all cycles for samples that displayed robust enrichment

of specific sequences were loaded to a MySQL database together with information about the experiments and the factors analyzed.

In general, cycle used for PWM generation was selected from cycles 2 to 4 in such a way that more than 1000 subsequences were

included to the model after background correction, and the seed length and sequence was selected based on the following criteria:

The length of seed sequence was determined by including flanking positions where the ratio between the most and least frequent

bases was > 2. After initial PWM generation using the most frequent kmer as seed, the seed was made more redundant to accom-

modatemore sequences at positions where the frequency of themost common base was < 0.5. At these positions, we used either N,

or where the ratio between the second and third most frequent bases was > 2, we used the IUPAC symbol for the two most frequent

bases (R, Y, M, K, S, or W).
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If the length of the seed was longer than 10 bp, a multinomial model allowing a single mismatch at any position was used. Seed

sequences were further manually curated to prevent mixing of two distinct binding modes, and to distinguish between monomer and

dimer models. Multiple seeds were used for the same factor if the IniMotif analysis of 6 to 12-mer sequences, or if plotting of the

observed k-mers versus those expected from the PWM revealed that the first model did not explain the most enriched k-mers, or

if enrichment of dimers was observed.

Models were corrected for background by subtracting normalized counts from the previous round as described in (Jolma et al.,

2010) using the equation Mcorrected =Mk+1 - lambda * Mk, where lambda is the fraction of DNA carried over non-specifically estimated

using 8-mer frequencies, and Mk+1 and Mk are the uncorrected matrices normalized for number of input sequences from cycles k+1

and k, respectively. Enrichment ratio model (Figure 1C) was calculated according to the following equation: Mratio = (Mk+1+

pseudocount)/(Mk+pseudocount)-lambda. A pseudocount at 1% of maximum frequency at cycle k+1 was used to prevent spurious

results due to division with small numbers.

We also investigated whether the MEME expectation maximization algorithm that builds models using a larger sequence space

than what we used would result in models that better describe the enrichment of k-mers. In general, this was not found to be the

case (not shown; see also Jolma et al., 2010). Use of the multinomial method was selected because: 1) it exactly corresponds to

the PWMmodel representation, 2) the number of enriched sequences was very high, alleviating the need to analyze a large sequence

space, and 3) use of larger sequence space commonly resulted in mixing of multiple different models.

The resulting data set contains information for more TFs than the entire published literature. The data were generated using

a systematic expression and SELEX pipeline, and the process was run using an automated platform generating highly consistent

and intercomparable data. The complete resource including all quantitative data is included as a Supplement, and primary sequence

data is available on Short Read Archive.

Adjacent Dinucleotide and Connecting Matrix Models
For generation of adjacent dinucleotidemodels, all subsequences within Hamming distance of two from a consensus seed sequence

(seed) were identified, and nucleotide pair counts were generated by counting the instances of each nucleotide pair at given pair of

positions when all other bases exactly matched the seed. Initial probability for a given base was then calculated by adding the prob-

abilities for all dinucleotides startingwith that base. Thiswasperformed at all positions to allow scoring of kmers thatwere shorter than

the matrix. The conditional probabilities were then calculated as follows: For each dinucleotide starting with A, C, G, or T, the sum of

the probabilities for all possible second bases was normalized to one. For scoring, all matrices were converted to log odds form.

Connecting matrix model was generated as described in Experimental Procedures. Positive and negative values in the cob

table denote the strength of preference and rejection of the corresponding dimers, respectively. By using the number of

observed dimers and the number of expected dimers in a background model, we define each value in the cob table as follows:

cobo,d = log2(observedo,d/expectedo,d). The background model consists of probabilities Px and Py for all nucleotide sequences x

and y of length m and d, respectively. These background probabilities are estimated from the data as the relative frequencies.

Here the quantity observedo,d is evaluated by counting each binding site pair in the data, where both sites have PWM score above

a fixed threshold t. The expected dimers are obtained from the background probabilities as follows: expectedo,d = n*Pdimer(o,d), where

n is the number of windows of length m+d in the data and Pdimer(o,d) is the probability of finding the dimer in a random sequence of

lengthm+d. In order to estimate the dimer probability, we define three sets of sequences. If PWMsM1 andM2 are directed according

to the orientation o, we define sets T1 and T2 of sequences that get score higher than the threshold t with PWMsM1 andM2, respec-

tively. The set S of dimeric sequences consists of those sequences a of length m+d that have binding site of M1 as the prefix, and

binding site of M2 as the suffix of a.

If d>=m, that is, the sites are not overlapping, we get the probability Pdimer(o,d) from the product PT1*PT2 of the background

probabilities. If, on the other hand, d < m, we get the probability Pdimer(o,d) as the sum of terms ½Pb*pc + ½Pc’*Pb’ over all sequences

a = bc = c’b’ in S, where the subsequences b and b’ have length m, and subsequences c and c’ have length d.

The total score for a dimer site is given as the sum of the PWM scores and the score cobo,d according to the orientation o and

spacing d of the two binding sites of the dimer.

ChIP-Seq and ROC Analysis
Antibodies and references for ChIP-seq are indicated in Experimental Procedures. Briefly, LoVo cells were crosslinked by 1%

formaldehyde and chromatin was sheared to 200-500 bp fragments, and immunoprecipitated with 5 mg of specific antibodies or

non-specific IgG. After washing, TF complexes were extracted, treated with RNase A (Dnase free, Sigma-Aldrich Cat.No. R6513)

followed by proteinase K (Thermo Scientific Cat.No. EO0491) at 65�C degrees to reverse the cross-links and to digest proteins.

DNA was purified using QIAGEN PCR purification kit and libraries for massively parallel sequencing constructed as described

(J.Y. et al., unpublished data).

For receiver operating characteristic (ROC) curves of a PWM in aChIP-seq experiment, we created apositive set of DNA sequences

by extracting the 250bp of genomic DNA (hg18 assembly) flanking the peak summits of the 500 ChIP-seq peaks with the lowest

p-values. As a negative set we used same sized sequences flanking random mappable genomic positions. The best scoring match

to the relevant PWMwas recorded for each sequence, and for each score threshold the fraction of sequences in the positive set with

a match above that threshold (true positives) was plotted against the corresponding fraction in the negative set (false positives).
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Analysis of Coverage of the TF Collection
To determine the coverage of the TF collection and to compare it to existing data, we ran pfam_scan.pl on all protein sequences for

the genes corresponding to Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Caenorhabditis elegans,

and Saccharomyces cerevisiae motifs from our data, UniProbe PBM database, and JASPAR. We then extracted the protein

sequences corresponding to the predicted DBD regions and ran pairwise sequence alignment of all pairs of such protein sequences

that correspond to the same pfam class. For alignment, we used the Needleman-Wunsch alignment algorithm with the BLOSUM62

scoring matrix and default parameters. We created a relational database containing the resulting sequence similarities linked to the

motifs via protein sequences and corresponding gene IDs.

Comparison of Similarity between the PWM Models
We compared the PWMs to each other using three different methods: the minimum Kullback-Leibler divergence-based method,

a method based on ungapped alignment of motifs (TOMTOM; Bailey et al., 2009), and a method based on covariance of binding

site positions in random DNA sequence (SSTAT; Pape et al., 2008). All analyses yielded similar overall pattern of similarity between

the matrices. However, differences were observed in distances obtained for dimeric sites.

Neither of the two widely used measures that compare the probability distributions defined by two PWMs, Pearson correlation

coefficient (TOMTOM software; Gupta et al., 2007) and the Kullback-Leibler distance could clearly separate different dimeric binding

modes of TFs with similar monomer specificities. In such a case, even though there is a clear resemblance between the dimer PWMs

(a shared half-site), the dimers may totally lack overlapping high-affinity binding sites (for example when the monomers are in oppo-

site orientations within the dimers). However, SSTAT could separate these cases because it explicitly regards two PWMs to be similar

if they describe similar sets of binding sites. The similarity of the binding sites is defined as the covariance of the number of binding

sites the two PWMs have on a random DNA sequence. Thus, the covariance-based method was selected for analyses of the

complete collection, as it more clearly separated dimers and monomers containing similar subsequences.

Network Analysis of Similarity between the PWMs
To visualize the data, we first calculated the similarities of all pairs of 830 PWMs using SSTAT (parameters: 50% GC-content, pseu-

docount regularization, type I threshold 0.01). These settings give the same overall density of binding site occurrences for both PWMs

tested, and limit the effects of stringency and low affinity sites on the similarity score.

We then generated a network containing two types of nodes, one type representing TF binding profiles, and another type repre-

senting TF proteins.

TF protein nodes were connected to their binding models, and the binding models were further connected to each other if their

SSTAT similarity score (asymptotic covariance) was greater than 1.5 3 10�5. This cut-off was determined by visual inspection of

the connected and unconnected PWMs and resulted in a network with 3563 edges between PWMs.

Minimum dominating set of the network (Garey, Michael R.; Johnson, David S. (1979), Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman) was used to select the representative set of the PWMs. A dominating set of the PWM

network covers all specificities, as defined by the similarity measure and its cut-off value, because every other PWM node is con-

nected by an edge to at least one PWM node in the dominating set. The minimum dominating set is the smallest possible such

set and is thus a concise representation of the binding specificities.

Finally, the network was visualized using Cytoscape software v.2.8.0 (Smoot et al., 2011). The layout of the network was done using

yFiles organic algorithm. Networks were transferred to vector image editor, and further annotated and labeled; 11 matrices having

very low sequence counts, or that represented replicate experiments and/or technical controls that are indicated in orange in

Table S3 were removed from final images.

For comparison, we also constructed networks containing PWMs downloaded from JASPAR database (downloaded files last

updated October 12, 2009; Portales-Casamar et al., 2010). We took all PWMs which species annotation included human or mouse

or both except those in the collection CNE as they cannot be directly linked to individual TFs. When there were several versions avail-

able for the same base identifier, only the newest one was chosen. The resulting set of 500 JASPAR PWMs were included into the

networks that were otherwise constructed the same way as the one containing only SELEX PWMs.

K-mer Network Analysis
For visualization of subsequences enriched in the fourth cycle of CDX1, CDX2, Hoxc10, HOXC11, HOXC12, HOXB13 and Hoxd9

experiments (Figure 6A) in cytoscape, we generated a network describing the relationships between the factors and the 9-mers,

we selected all 9-mers that were in the top five enriched 9-mers from any of the experiments, and ended in the sequence ‘‘TAAAA.’’

Edges were then drawn between the factors and the 9-mers if a 9-mer was enriched in a given experiment. To represent the similarity

between the sequences, an edgewas also drawn between the 9-mers if they werewithin a Hamming distance of one from each other.
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Figure S1. Differences between HT-SELEX Data and Existing Data, Related to Figure 2

(A) Some differences can be explained by the low information content of previous models compared to HT-SELEX data for the same factor or a close paralog.

Name of factor, source of model and sequence logo are shown.

(B) In some cases, HT-SELEX identifiedmotif is longer than what the previous method could analyze. The previous models have broken into two separate models

(PBM1 and PBM2; top), or is only partially represented by previous data (bottom).

(C) Misalignment in PWM generation from kmer data can result in formation of false palindromic sites (ZIC, ZBTB7B, top; misaligned sequence boxed), or

inappropriate joining of two parts of two distinct models for the same factor (RFX4, bottom).

(D) HT-SELEX detects SOX binding to inverted repeat sequences that apparently represent a stem-looped single-stranded DNA. Left: three different apparent

dimers are bound by SOX9. Right: sequences flanking ATGA (top), ATCA (middle) and AACA (bottom) query matches reveal that in each case, an inverted repeat

of the query sequence appears 30 to the query after a 7 bp gap (2nd site), suggesting that the bound sequence is a stem-loop formed from a single-stranded DNA.

This interpretation is also consistent with the preferential presence of such matches in only one strand of the selection ligand (not shown).
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Figure S2. Network Representation of HT-SELEX, JASPAR CORE, and PBM Data, Related to Figure 3

SELEXmodels have thin edge, whereasmodels derived from JASPAR or PBMare indicated with a thick edge. Network is laid out as in Figure 3. Individual binding

models are colored according to the TF family indicated (top left). Some profiles that diverge between SELEX and JASPAR data are indicated by colored circles;

red indicates that motif is of low information content, blue that HT-SELEX motif is longer than the previous method could analyze, green that motif is affected by

misalignment of kmers or other computational processing artifacts, and brown that motif represents sequences potentially enriched as single-stranded or stem-

looped DNA in HT-SELEX. Detailed analysis of each type case is shown in Figure S2. Analysis of mouse TF specificities using PBMs has revealed that TFs can

have multiple modes of DNA binding, and that a single TF can bind to distinctly different sequences (Badis et al., 2009), suggesting that PWM models might not

adequately describe DNA-binding for most TFs. The two types of PBM models are indicated by an underscore followed by number (1 is primary, 2 secondary).

Note that most PBM models that are connected to SELEX models are primary, whereas most secondary models from PBM do not connect to SELEX motifs.
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Figure S3. Closely Packed Monomers Can Affect Each Other’s Binding Specificity, Related to Figure 6

(A) Asymmetric binding of the monomers is observed when monomer sites are located close together. Top: Close packing of target sites can affect monomer

specificity. Protein can bind to an optimal site (pink oval) or to a weaker site (blue oval). Middle: The consensus sequence of FLI1 dimer expected by monomer

specificity GGAATTCC (bottom, gray) is very weakly enriched, whereas sites where one or both monomers bind to a GGAT core are strongly enriched. Note that

the asymmetric PWM (right) correctly describes lack of enrichment of the GGAATTCC site, whereas the symmetric PWM (left) predicts much higher enrichment

for this sequence. Bottom: Similar effect is observed in a PKNOX2 dimer.

(B) Potential cases where dimerization or multimerization affects monomer specificity even more dramatically.
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Figure S4. Literature and ChIP-Seq-Based Validation of Homodimeric Interactions Detected in HT-SELEX, Related to Figure 1

(A) Comparison between binding models obtained using SELEX (left panel) and previously published models (right panel). References for previous models:
1Roche et al., 1992; 2Welboren et al., 2009; 3Bich et al., 2010; 4Lamber et al., 2008; 5Stroud et al., 2002; 6Lin et al., 2000; 7Conlon et al., 2001; 8Chen et al., 2008;
9Jolma et al., 2010; 10Mader et al., 1993; 11Mohibullah et al., 1999. Previous models are based on X-ray structure (X-ray), SELEX, ChIP-seq, mass spectrometry

(MS), reporter assay, electrophoretic mobility shift assay (EMSA) or known functional sites (Func. sites).

(B) In-vivo confirmation of homodimeric binding models for GMEB2, HNF1A, Tp53 and HNF4A. ChIP-seq peaks from where the enriched motifs were identified

are from Yan et al., in preparation.
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