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The environment in which the fetus develops is critical for its
survival and long-term health. The regulation of normal hu-
man fetal growth involves many multidirectional interactions
between the mother, placenta, and fetus. The mother supplies
nutrients and oxygen to the fetus via the placenta. The fetus
influences the provision of maternal nutrients via the placen-
tal production of hormones that regulate maternal metabo-
lism. The placenta is the site of exchange between mother and
fetus and regulates fetal growth via the production and me-
tabolism of growth-regulating hormones such as IGFs and
glucocorticoids. Adequate trophoblast invasion in early preg-
nancy and increased uteroplacental blood flow ensure suffi-

cient growth of the uterus, placenta, and fetus. The placenta
may respond to fetal endocrine signals to increase transport
of maternal nutrients by growth of the placenta, by activation
of transport systems, and by production of placental hor-
mones to influence maternal physiology and even behavior.
There are consequences of poor fetal growth both in the short
term and long term, in the form of increased mortality and
morbidity. Endocrine regulation of fetal growth involves in-
teractions between the mother, placenta, and fetus, and these
effectsmayprogramlong-termphysiology.(EndocrineReviews
27: 141–169, 2006)
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I. Introduction

THE HUMAN FETUS develops along a narrow growth
trajectory that must balance the demands of the fetus

with the capabilities of the mother. If the fetus grows to be
too large, a difficult delivery is likely, putting the mother at
risk, whereas being too small has its own risks for the fetus.
Understanding the endocrine factors regulating these pro-
cesses may assist in future clinical care of small neonates,
which has the potential to improve the health of the popu-
lation as a whole. A large body of human data has been
collected regarding the physiology of human fetal growth
and development as well as the short-term and long-term

effects of poor fetal growth. This review will focus on avail-
able evidence from human studies and will discuss the role
of the mother, placenta, and fetus in the endocrine regulation
of fetal growth.

II. The Physiology of Human Fetal Growth and
Development

A. The role of the mother in fetal growth regulation

1. The maternal genome and the maternal environment. Normal
fetal growth involves an increase in cell number during em-
bryonic and fetal development, followed by an increase in
cell size, which becomes dominant after 32 wk gestation (1).
Fetal growth and development are influenced by genetic as
well as environmental factors. Maternal genes have an im-
portant specific influence over fetal growth (2). In particular,
maternal height, which represents uterine capacity and the
potential for growth, is a major determinant of fetal size (3).
Although birth weights are similar and correlate among sib-
lings, it is known that environmental influences are also
important in determining growth. This is demonstrated by
the fact that birth weights are more closely related in half-
siblings with the same mother than in those with the same
father (4). In a study of pregnancies involving ovum dona-
tion, Brooks et al. (5) found that the only factors contributing
to birth weight were gestational age and the recipient moth-
er’s weight, whereas the weight of the donor mother was not
related to birth weight. These studies indicate that the uterine
environment is a key determinant of fetal growth.

A variety of maternal and uteroplacental factors limit the
growth of the fetus. Maternal constraint refers to the limited
capacity of the uterus to support fetal growth and is impor-
tant to limit fetal overgrowth and the subsequent dystocia,
to ensure the mother’s capacity for future successful preg-
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nancies (6). Maternal constraint may be supply limited, by
maternal size or nutrient availability, or may be demand
driven, as in the case of multiple pregnancies (6).

2. Maternal nutrient intake. The mother is the supplier of
oxygen and essential nutrients to the fetus via the placenta.
Maternal diet, caloric intake, and metabolic function each
have an important role to play in supplying nutrients to the
fetus. In addition, alterations in maternal metabolism in re-
sponse to hormonal signals ensure a redirection of required
nutrients to the placenta and mammary gland (7). Increased
caloric intake is necessary during the second and third tri-
mesters to cope with most fetal and placental growth (7).
Protein intake may be particularly important, and whereas
some studies found a relationship between low protein in-
take in late pregnancy and reduced birth weight (8), others
found no effect of protein supplementation on fetal growth
in undernourished mothers (9). Nonetheless, supplementa-
tion of calories or specific vitamins to undernourished
women does increase birth weight in situations of acute
and/or chronic starvation (10). For example, folic acid, iron,
and vitamin A supplementation to pregnant women in Ne-
pal resulted in an increase in mean birth weight of 37 g and
a 16% reduction in the rate of low birth weight compared
with pregnant women given vitamin A alone (11). However,
multiple micronutrient supplementation with folic acid, zinc,
iron, vitamin A, and 10 other micronutrients was not of
additional benefit compared with folic acid and iron, sug-
gesting that iron deficiency may be an important cause of
reduced fetal growth (11). A Cochrane systematic review of
six randomized controlled trials found that balanced protein-
energy supplementation was able to reduce the risk of small
for gestational age (SGA) neonates by approximately 30%
(12). The majority of the evidence comes from trials con-
ducted in developing countries and/or in poor communities,
and the relevance for women in developed countries is less
clear.

Glucose is an important nutrient in the control of fetal
growth. Studies of diabetic women have shown that low
blood glucose levels during pregnancy as a result of exces-
sively tight glycemic control lead to a greater incidence of
SGA neonates, whereas having high blood glucose levels
contributes to a high incidence of macrosomia (13, 14).

Low nutrient intake is associated with poor fetal growth.
Compulsory food rationing during the Dutch famine (1944–
1945) was as low as 400–800 calories/d at the height of the
famine, and when exposure occurred during the second and
third trimester, maternal weight gain and fetal growth were
significantly reduced (15). Mitchell et al. (16) conducted a
case-control study to determine the role of maternal diet on
the risk of SGA infants. They found that women with babies
of normal birth weight consumed more fish, carbohydrate-
rich foods, and folate supplements at the time of conception
compared with those with SGA babies. In late pregnancy, the
only dietary influence on birth weight was the consumption
of iron supplements, which correlated with higher birth
weights. This study suggested that nutritional effects are
most likely to have an influence in early pregnancy.

A recent prospective cohort study of more than 500 preg-

nant women in South Australia investigated the importance
of macronutrient intake in early and late pregnancy on pla-
cental and fetal growth (17). Maternal dietary intake (total
energy, protein, and carbohydrate) was examined using food
frequency questionnaires in early pregnancy (16 wk gesta-
tion, reflecting diet since conception) and late pregnancy
(30–34 wk gestation). A positive correlation was found be-
tween the proportion of total energy intake contributed by
protein in early pregnancy and birth weight, placental
weight, and ponderal index. In addition, there was an inverse
relationship between carbohydrate intake in early pregnancy
and ponderal index at birth. These relationships were inde-
pendent of total energy intake, maternal prepregnancy
weight, and gestational weight gain. Nutritional require-
ments for fetal development vary with gestational age, and
data from this study suggest that macronutrient intake in
early pregnancy had the greatest effects on size at birth (17).
Different protein sources may also have specific influences
on fetal growth due to their amino acid or micronutrient
composition. There is a correlation between dairy protein
intake and placental weight (8) and femur growth (18). These
studies emphasize the importance of maternal nutritional
intake and nutrient availability in contributing to maternal
weight gain and adequate fetal growth.

The fetus likely exerts its own influences on maternal
nutritional intake. Fetal sex is known to affect fetal growth,
with male fetuses being larger, on average, than female fe-
tuses (19). Tamimi et al. (20) studied maternal dietary intake
during the second trimester of pregnancy and suggested that
the fetus may be able to modulate its mother’s nutritional
input, because women pregnant with a male fetus had a
higher energy intake compared with women pregnant with
a female fetus. After adjustment for confounding factors, this
related to an extra 796 kJ/d contributed by 8% higher protein,
9.2% higher carbohydrates, and more than 10% higher lipid
intakes in women pregnant with a male fetus compared with
women pregnant with a female fetus (20). Fetal sex-specific
signals may have an important influence on fetal growth
regulation; however, the nature of these signals is not
understood.

3. Maternal uterine artery blood flow. Increased uterine blood
flow is essential to meet metabolic demand from the growing
uterus as well as the placenta and fetus (21). Total maternal
blood volume (22) and cardiac output increase by approxi-
mately 40% during pregnancy (23), and the total uteropla-
cental blood flow represents 25% of cardiac output (21).
Thaler et al. (24) found that uterine artery volume flow rate
increased by more than 3-fold during pregnancy, partly in-
fluenced by an increased artery diameter and reduced re-
sistance to flow. In addition to increased uterine blood flow
during normal pregnancy, the development of new blood
vessels also occurs in the uterus, possibly promoted by the
placental hormones human chorionic gonadotropin (hCG)
(25) and IGF-II (26). Using Doppler assessment of the uterine
arteries at 23 wk gestation, Albaiges et al. (27) identified that
uterine artery blood flow resistance was associated with an
increased risk of subsequent SGA.
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4. Influences on maternal development during pregnancy

a. Maternal smoking and drug use. Maternal cigarette smok-
ing is associated with reduced birth weight, and early reports
suggested a doubling of the rate of low birth weight in
smokers compared with nonsmokers and a dose-dependent
effect with increasing number of cigarettes smoked (28–30).
More recent studies demonstrate a 3.5-fold increased risk of
SGA infants in women who smoke during pregnancy (31),
with a greater effect on low birth weight with increasing
maternal age (32, 33). Maternal smoking affects the entire
range of birth weights, shifting the birth weight distribution
curve to the left (34). In 1965, MacMahon et al. (34) established
that women who smoked before pregnancy but not during
pregnancy had babies of similar size to nonsmoking mothers
and that paternal smoking also had no influence on birth
weight. Smoking reduces birth weight by approximately
150–200 g (35), representing one of the largest preventable
effects on intrauterine growth restriction (IUGR) (3). Growth
restriction is usually symmetrical with reduced weight, head
circumference, and abdominal circumference (1). The mech-
anism of the effect of maternal smoking relates to both the
higher levels of carbon monoxide in maternal blood that
cross the placenta to the fetus, leading to fetal tissue hypox-
emia (36), and the vasoconstrictive effects of nicotine (37). In
addition, there may be an interaction between maternal
smoking and nutritional intake, which adversely affects fetal
growth. Women who smoke have different diets from non-
smokers, due to the suppression of appetite by smoking (38).
Studies have suggested that pregnant smokers have lower
circulating concentrations of vitamin C, �-carotene, vitamin
B12, vitamin B6, and folate compared with pregnant non-
smokers, possibly due to lower dietary intake, increased
utilization, or decreased absorption of these micronutrients
(38). Randomized controlled trials of smoking cessation pro-
grams for pregnant women have been successful in improv-
ing fetal growth (39).

Components of cigarette smoke have effects on amino acid
transport from the mother to fetus. In vitro, nicotine has been
demonstrated to reduce activity of the major transporter of
the microvillous membrane, sodium-dependent system A, in
human placental slices, suggesting an independent effect of
nicotine associated with IUGR (40). Such changes in amino
acid transport are significant for the development of IUGR,
due to the small difference between the placenta’s capacity
to transport amino acids and fetal demand (41).

The use of drugs, such as cocaine and marijuana, also has
significant negative effects on fetal growth. Cocaine use con-
tributes to an increased rate of low birth weight and a re-
duction in mean birth weight by at least 100 g (42, 43). The
mechanisms of cocaine’s effect include transient vasocon-
strictive effects on the placental vasculature and specific in-
hibition of amino acid transport by systems A and L (41).

b. Maternal hypoxia. Maternal hypoxia influences fetal
growth, and its effect is independent of socioeconomic status,
prematurity, maternal smoking, pregnancy-induced hyper-
tension, and parity (44, 45). Studies in Colorado have dem-
onstrated a mean difference in birth weight of 241 g between
residents of high altitude (2744–3350 m) and lower altitude

(915–1524 m) (45). A 3-fold increase in the rate of low birth
weight was found at the highest altitudes in the United States
(2500–3100 m) compared with the lowest altitudes (�500 m),
with a far greater increase in the proportion of low birth
weights due to IUGR than prematurity (44). Altitude is a
strong predictor of IUGR through changes in third trimester
fetal growth. Krampl et al. (46) performed serial ultrasound
measurements of fetal size from 14–42 wk gestation in sev-
eral hundred women at sea level and at 4300 m in Peru and
found that the reduction in fetal growth occurs from ap-
proximately 25 wk gestation. The effect of altitude was
greater on abdominal circumference than on head circum-
ference, and mean birth weight was reduced by approxi-
mately 400 g (46).

The combination of hypoxia and pregnancy appears to be
important in alterations in maternal physiology, including
changes in immune pathways (47). Coussons-Read et al. (47)
found that maternal serum levels of the proinflammatory
cytokines, TNF-� and IL-6, were increased at high altitude
(3100 m) compared with moderate altitude (1600 m), and the
antiinflammatory cytokine, IL-10 was decreased by the third
trimester, whereas none of these parameters differed be-
tween residents of moderate and high altitude at 3 months
post partum. Moore et al. (48) found that maternal hypoven-
tilation and a decreased maternal arterial O2 content in the
third trimester were directly related to infant birth weight at
3100 m. In women living at high altitude in Peru, an in-
creased ventilatory response to hypoxia during pregnancy
was associated with a rise in birth weight through increases
in maternal oxygenation (49).

There is an interaction between maternal hypoxia and
alterations in placental and uterine blood flow, which could
contribute to reduced nutrient transport to the fetus (50). At
high altitude, less common iliac flow reaches the uterine
artery (51). Despite an increase in uterine artery flow veloc-
ity, the uterine artery diameter is reduced, resulting in lower
volumetric flow in late pregnancy (51). Studies of the pla-
centa from high-altitude pregnancies have demonstrated
that there is less remodeling of the uteroplacental arteries
compared with those at moderate altitude (52). These studies
suggest that physiological changes in response to high-alti-
tude residence, which reduce blood flow to the fetoplacental
unit, are detrimental for fetal growth.

c. Maternal inflammatory diseases. The presence of a mater-
nal inflammatory disease may contribute to reduced fetal
growth. We have investigated the effect of maternal asthma
on fetal growth and placental function (53–59). Previous ep-
idemiological studies have linked maternal asthma with an
increased risk of low birth weight (60); however, the mech-
anisms are poorly understood. In a prospective cohort study,
women with mild asthma were found to have female neo-
nates of reduced mean birth weight, and the use of antiin-
flammatory inhaled steroid medication for asthma was pro-
tective against these changes in fetal growth (55). There were
no alterations in fetal growth at 18 and 30 wk gestation as
measured by ultrasound, suggesting a late gestation decline
in growth, which was accompanied by a reduction in pla-
cental 11�-hydroxysteroid dehydrogenase type 2 (11�-
HSD2) activity (54, 55). We speculate that inflammatory fac-
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tors may be involved in the regulation of placental 11�-HSD2
activity in this context (54, 55). In addition, there may be a
role for reduced placental blood flow in altering fetal growth
in women with moderate and severe asthma (53).

Several other inflammatory diseases are also associated
with reduced fetal growth, including rheumatoid arthritis
(61), inflammatory bowel disease (62), systemic lupus ery-
thematosus (63), and periodontal disease (64). In addition,
elevated maternal serum or placental inflammatory cyto-
kines have been associated with IUGR (65–67). Women with
active inflammatory arthritis during pregnancy had smaller
neonates at birth compared with healthy control women or
women whose disease was in remission (68), suggesting that
active inflammation during pregnancy may contribute to a
reduction in fetal growth.

Maternal health influences the maternal state during preg-
nancy with implications for fetal growth. In addition to in-
flammatory diseases, many other maternal factors, including
preeclampsia (69), anemia (70, 71), infections (1), and alcohol
consumption (72), influence fetal growth via changes in pla-
cental function.

B. The role of the placenta in fetal growth regulation

The placenta receives and transmits endocrine signals be-
tween the mother and fetus and is the site of nutrient and
waste exchange. The total placental surface area for exchange
is 11 m2 at term (73). In fetal growth restriction, both the
placental villous surface area and placental volume are de-
creased (73, 74). Adequate placental growth is essential for
adequate fetal growth. SGA neonates have significantly re-
duced placental weights compared with appropriately
grown neonates of the same birth weight (75). Several aspects
of placental function are critical for human fetal growth and
development, including adequate trophoblast invasion, an
increase in uteroplacental blood flow during gestation, trans-
port of nutrients such as glucose and amino acids from
mother to fetus, and the production and transfer of growth-
regulating hormones.

1. Trophoblast invasion and uteroplacental blood flow. Adequate
trophoblast invasion is required to sustain fetal growth.
When the blastocyst adheres to the uterus, fetal trophoblast
cells differentiate into villous or extravillous cells (23). Mi-
gration and invasion of extravillous cytotrophoblasts into the
maternal uterine epithelium are processes that are essential
for increased uteroplacental blood flow as pregnancy
progresses (23). Maternal uterine spiral arteries are trans-
formed into larger, low-resistance vessels (76), capable of
transporting the increased maternal blood to the placenta
(21). During the modification and remodeling of spiral ar-
teries, the muscular and elastic walls of the arteries are re-
placed with a fibrinoid layer embedded with trophoblast
cells, allowing low-pressure intervillous flow (21, 77). The
absence of trophoblast-induced changes in decidual or myo-
metrial segments of spiral arteries is a feature of some preg-
nancies complicated by fetal growth restriction (78). The
syncytiotrophoblast cell layer, which is differentiated from
cytotrophoblast cells, is the site where hormones such as
estrogen, progesterone, hCG, placental lactogen, and pla-
cental GH are produced to maintain the pregnancy (6).

Increased blood flow during pregnancy increases the flow
of nutrients from the mother to the fetus. Uteroplacental
blood flow was shown to be reduced by up to 50% in women
with preeclampsia (79), a group susceptible to IUGR, and
uterine artery volumetric flow was also reduced by one third
in late gestation in high-altitude pregnancies (51). There is a
decrease in number and surface area of terminal villi in
IUGR, representing a malfunction of vascularization in these
pregnancies (26).

Doppler velocimetry techniques are used to detect in-
creased vascular resistance in the uterine arteries, which
occurs as a result of inadequate trophoblast invasion of the
spiral arteries (31). In addition, examination of the fetal cir-
culation, particularly umbilical artery waveforms, may re-
flect placental insufficiency (31). Umbilical vein blood flow,
measured by Doppler ultrasound techniques (80), is de-
creased in IUGR fetuses in relation to fetal size (81), repre-
senting reduced perfusion of the fetal tissues (82). A study of
70 human fetuses found a strong correlation between abso-
lute umbilical vein flow and fetal head and abdominal cir-
cumferences, with an increase in umbilical vein diameter and
mean velocity throughout pregnancy (83). There was also an
exponential increase in flow from 97 ml/min at midgestation
to 529 ml/min in late gestation, but no corresponding in-
crease in flow per kilogram of fetal weight, suggesting that
increasing flow is driving the increase in fetal size in late
gestation (83). Di Naro et al. (84) also demonstrated reduced
umbilical vein flow in IUGR fetuses, both in absolute terms
and when adjusted for abdominal circumference. In addi-
tion, they found that the cross-sectional area of the umbilical
cord and of the umbilical vein itself was lower in IUGR
fetuses than normally grown fetuses (84). These studies sug-
gest the importance of trophoblast invasion and changes in
uteroplacental and umbilical blood flow for maintaining ap-
propriate fetal growth through the supply of oxygen and
nutrients.

2. Nutrient transport across the placenta. The placenta is a met-
abolically active organ that extracts 40–60% of the total glu-
cose and oxygen supplied by the uterine circulation (85). The
remaining nutrients and metabolites are transferred across
the placenta to the fetus by passive diffusion, facilitated
diffusion, active transport (86), endocytosis, or exocytosis
(87). Transport by passive diffusion (of oxygen, carbon di-
oxide, and urea) is limited by the placental exchange area and
blood flow. Facilitated diffusion (of glucose and lactate) in-
volves transfer down a concentration gradient by a carrier
molecule, without a requirement for additional energy. Ac-
tive transport requires both carrier proteins and the input of
additional energy (85). Placental transfer increases as the
fetal growth rate increases (88).

a. Amino acid transport. Amino acid transporters exist
within the fetal (basal) and maternal (microvillous) facing
syncytiotrophoblast plasma membranes (89). System A, a
sodium-dependent active transporter, is found mostly on the
microvillous membrane and transports neutral amino acids
such as alanine, proline, glycine, and serine (89). System
ASC, found mostly on the basal membrane, transports neu-
tral amino acids (90). Sodium-independent system L trans-
ports phenylalanine and branched-chain amino acids (89),
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whereas systems y� and y�L transport cationic amino acids
such as arginine across the microvillous and basal mem-
branes, respectively (89). Amino acids may also be metabo-
lized and processed by the placenta. For example, leucine is
deaminated in the placenta, and the deaminated product and
leucine itself are both transferred to the fetus (91).

In fetal growth restriction there are alterations in amino
acid transport by the placenta and uptake by the fetus. Jans-
son et al. (92) found that in vitro uptake of lysine in the basal
membrane and leucine in both the basal and microvillous
membranes was decreased in placentae from IUGR preg-
nancies, suggesting reduced activity of amino acid trans-
porters. Fetal plasma collected at midgestation from SGA
fetuses showed a reduction in essential amino acids with
lower levels of �-aminonitrogen and decreases in branched-
chain amino acids such as valine, leucine, and isoleucine
along with serine (93, 94) and phenylalanine (95). Econo-
mides et al. (86) found that the ratio of nonessential to es-
sential amino acids was increased with fetal hypoxemia,
assessed by umbilical vein PO2. In IUGR, the activity of
system A in the microvillous membrane is reduced (96),
whereas the expression and activity of glucose transporters
in the syncytiotrophoblast are not changed (90). However,
there have also been findings of reduced system A activity
in macrosomic babies of diabetic mothers (97), and Godfrey
et al. (98) described an inverse relationship between size at
birth in the normal range and placental system A activity.
This increase in activity with reduced size may represent a
compensatory mechanism in smaller babies.

Taurine, although not incorporated into proteins, is an
essential amino acid for the fetus, with a variety of physio-
logical functions that are important for fetal growth and
central nervous system development (99). TAUT is the hu-
man taurine transporter that is primarily expressed in the
microvillous membrane (100). Norberg et al. (99) demon-
strated that sodium-dependent transport of taurine was spe-
cifically reduced in the microvillous membrane by 34% in
IUGR placenta compared with those from normal pregnan-
cies. Roos et al. (100) found that the expression of TAUT
protein was unaltered in IUGR, confirming that a reduction
in activity may be responsible for reduced taurine transport
in IUGR.

The fetus may influence the expression of placental amino
acid transporters in response to a slowing of fetal growth.
Studies in transgenic mice lacking the P0 transcript of the
IGF-II gene found that whereas there was a decrease in
passive diffusion of nutrients in association with reduced
growth, there was an up-regulation of active amino acid
transport, possibly as a compensatory mechanism to attempt
to improve fetal growth (101). The fetus may signal to the
mother, through the placenta, that more nutrients are re-
quired in the case of poor growth.

b. Glucose transport. Glucose is the main source of energy
for the human fetus and placenta. The fetus produces min-
imal amounts of glucose, thereby requiring glucose transport
from the mother, which is carried out by facilitated diffusion
using transporters found on the maternal and fetal sides of
the trophoblast (102). Glucose transporter 1 is found in abun-
dance in the microvillous membrane of the syncytiotropho-

blast at levels three times higher than the basal membrane
(103). Hypoglycemia in SGA fetuses may be related to re-
duced supply and transfer of glucose across the placenta
(104). In a perfusion study, baseline glucose consumption
was 2-fold higher in preterm IUGR placentae compared with
normally grown preterm placentae, suggesting that placental
consumption of glucose may contribute to alterations in ma-
ternal-fetal concentration differences in glucose (105). How-
ever, there was no change in glucose transfer to the fetal side
of the placenta (105), confirming previous work showing no
alteration in glucose transporter expression or activity in
IUGR placentae (106, 107). Another study found that the
maternal-fetal glucose concentration gradient was increased
in relation to the clinical severity of IUGR, possibly repre-
senting an adaptation to maintain glucose uptake across the
placenta (102).

c. Fatty acid transport. In the third trimester, fatty acids are
required for changes in fetal tissue composition, particularly
that of the brain and adipose tissue (108). The n-3 and n-6
fatty acid structures can only be acquired from the maternal
diet and placental transfer (109). Free fatty acids may be
transferred across the placenta via passive diffusion (110) as
well as by fatty acid binding proteins and fatty acid transfer
proteins in the microvillous and basal membranes (109). The
essential fatty acid, linoleic acid, was found to be signifi-
cantly higher in IUGR placentae compared with those from
appropriately grown fetuses (111), which may have impli-
cations for fetal brain development (112). The activity of
lipoprotein lipase, a triglyceride hydrolase in the microvil-
lous membrane, was recently found to be reduced in preterm
IUGR samples compared with gestational age-matched con-
trols (113).

3. Placental hormone production. During human pregnancy, the
placenta is an important endocrine organ. It produces nu-
merous hormones, including estrogens and progesterone,
hCG, human GH variant, and human placental lactogen.
Some of these hormones play a role in the regulation of fetal
growth. A study of mothers who were malnourished or
anemic found that cord blood concentrations of human pla-
cental lactogen, GH, and IGF-I were increased compared
with those of healthy pregnant women (114). Another study
found a link between changes in placental lactogen measured
in maternal serum and the fetal growth velocity, assessed
using ultrasound measurements (115). Placental lactogen
may promote early embryonic growth (116) and is thought
to exert its influence on the fetus by stimulating production
of other hormones such as IGF-I and insulin (117). There are
little data to suggest a direct role for estrogens and proges-
terone in human fetal growth regulation; however, some
studies have demonstrated correlations between the concen-
trations of these hormones and birth weight or placental
weight (118, 119).

Fetal insulin promotes growth of the fetus, acting as a
signal of nutrient availability (120). Insulin deficiency results
in a reduction in fetal growth, as the fetal tissues decrease
their uptake and utilization of nutrients (121). A recent study
demonstrated that venous cord blood concentrations of in-
sulin were significantly lower in SGA neonates and corre-
lated, overall, with birth weight, birth length, and placental
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weight (122). On the other hand, the levels of insulin in
maternal serum or amniotic fluid were not correlated with
birth weight (122). Verhaeghe et al. (123) also found a reduced
concentration of insulin in the cord blood from SGA neonates
compared with appropriately grown neonates and, interest-
ingly, that maternal corticosteroid administration transiently
increased the insulin concentration. There is also a relation-
ship between increased insulin production and increased
fetal growth. It has been proposed that, in response to ma-
ternal hyperglycemia, the fetus increases its production of
insulin, and this increase in fetal insulin is responsible for the
increased growth and macrosomia observed in diabetic preg-
nancies (124).

During pregnancy, human GH variant is released into the
maternal circulation suppressing production of pituitary GH
(85). In IUGR, circulating human GH variant is reduced in
maternal serum, and mRNA is reduced in the placenta (85);
however, GH is not thought to be the major regulator of fetal
growth prenatally, with the IGFs having a more dominant
role.

a. The IGF axis. IGF-I and IGF-II are polypeptides with a
sequence similar to that of insulin (125). They have mitogenic
properties, inducing somatic cell growth and proliferation
(126, 127), and they have the ability to influence the transport
of glucose and amino acids across the placenta (128). Alter-
ations in the IGF axis are associated with fetal growth re-
striction in both animal models and human studies.

b. Knockout mice studies. Using knockout and transgenic
mice, it has been demonstrated that IGF-I and IGF-II are
required for optimal fetal and placental growth (101, 129–
131). IGF-I knockouts are 60% smaller than their wild-type
littermates with no alteration in placental size (130, 131).
IGF-II knockouts are also 60% smaller but, in addition, re-
duced placental growth is evident from embryonic d 13.5
(129, 130). In IGF-I/IGF-II knockouts, birth weight was fur-
ther reduced to 30% of normal size (131). Knocking out the
IGF-I receptor, either alone or in combination with IGF-I or
IGF-II, resulted in postnatal death due to respiratory failure
and a 50% reduction in fetal size (131). In recent work, se-
lective mutation of the placental promoter of the IGF-II gene
(P0 in mice) resulted in a proportionate reduction in size of
all parts of the placenta by embryonic d 12 and in fetal size
by d 16, despite the fact that this transcript constitutes only
10% of all placental IGF-II mRNA (101, 132). No further
reductions in placental growth were observed when all
IGF-II was absent, suggesting that the P0 transcript is es-
sential for determining the action of IGF-II on the placenta
(101). Overexpression of the IGF-binding protein (IGFBP)-1,
in transgenic mice results in a transient decrease in midg-
estation fetal growth (133).

c. IGF Receptors. The type 1 IGF receptor is a transmem-
brane heterotetrameric (�2�2) glycoprotein similar in struc-
ture to the insulin receptor (134). It binds both IGF-I and
IGF-II through an extracellular �-subunit and has 15–20
times greater affinity for IGF-I than for IGF-II (135). In the
syncytiotrophoblast, type 1 IGF receptors are found mainly
on the microvillous membrane, facing the maternal side
(136). The type 2 IGF receptor (mannose-6-phosphate recep-

tor) is a single-chain polypeptide with a high affinity for
IGF-II, which is unable to bind IGF-I or insulin (131). Knock-
out of the IGF-II receptor results in placental and fetal over-
growth (137, 138), whereas recent studies in humans dem-
onstrated that a mutation in the IGF type 1 receptor gene,
which results in reduced functioning of the receptor, is as-
sociated with poor prenatal and postnatal growth (139).

d. Circulating maternal and fetal IGFs. Serum concentrations
of IGF-I and IGF-II are higher in pregnant women than non-
pregnant women (140) with concentrations increasing even
further by the third trimester (141). These data suggest that
the IGFs have a role in fetal growth regulation in addition to
their well-characterized effects on postnatal growth (142).
Maternal IGF production is stimulated by hormonal signals
derived from the placenta. Placental GH and human pla-
cental lactogen are synthesized by the syncytiotrophoblast
and released into the maternal circulation where they stim-
ulate IGF-I production (143). Placental lactogen is also re-
leased into the fetal circulation where it stimulates the IGF
axis (143). Hill et al. (144) demonstrated that placental lac-
togen was unable to promote the growth of human fetal
fibroblasts and myoblasts in the presence of an antibody
against IGF-I. Fetal serum concentrations of IGF-I, IGF-II,
and IGFBP-3 increase significantly with advancing gestation,
with the greatest rise in IGF-I (145). These circulating fetal
IGFs are likely to be derived predominantly from the fetal
tissues and may be modulated by the placenta (146).

e. IGFBPs. The actions of IGF-I and IGF-II are modified by
the six IGFBPs, IGFBP-1–6 (147). IGFBP-1 is dynamically
regulated in human plasma, and its levels can vary more than
10-fold in response to changes in insulin (147). IGFBP-1 binds
IGF-I and II with greater affinity than either of the IGF re-
ceptors and thus prevents the IGFs from exerting their mi-
togenic actions (147). IGFBP-2, -4, -5, and -6 are present in low
concentrations in plasma (147). IGFBP-3 complexes with
IGF-I or II and an acid-labile subunit, acting as a reservoir for
IGFs in the circulation (147, 148), and increases in maternal
plasma during pregnancy (149).

IGFBP-1 is the major regulator of IGF-I action during preg-
nancy. It is the main product of the decidua (146, 150), the
major IGFBP found in the amniotic fluid (151), and binds
IGFs in fetal plasma (152, 153). IGFBP-1 can exist in one of
several phosphorylated forms. In the amniotic fluid, there are
up to five phosphorylated forms in addition to a nonphos-
phorylated form of IGFBP-1. Fetal serum contains large
amounts of the nonphosphorylated form, whereas decidual
cells contain only the phosphorylated forms (154). Jones et al.
(154) found that the mix of phosphorylated forms of IGFBP-1
had 6-fold higher affinity for IGF-I than the nonphosphory-
lated form. Subsequently, Westwood et al. (153, 155) found
that plasma from nonpregnant adults only contained the
highly phosphorylated species, whereas pregnant plasma
also contained a nonphosphorylated and three less phos-
phorylated variants, with concentrations at least double that
of nonpregnant individuals and higher in multifetal preg-
nancies (156). These data demonstrate the importance of
posttranslational phosphorylation of IGFBP-1 in pregnancy.
The highly phosphorylated isoform has the highest affinity
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for IGF-I, which is greater than that of the IGF type 1 receptor,
resulting in an inhibition of IGF activity, whereas the non-
phosphorylated form has a similar affinity for IGF-I as its
receptor (153, 157). Dephosphorylation of IGFBP-1 may rep-
resent a mechanism by which IGF-I is released and its bio-
activity increased in pregnant women. Maternal serum con-
centrations of IGFBP-1 increase in the first trimester, peak at
midgestation and remain constant until delivery, and then
fall after birth (158).

Proteolysis of IGFBPs may be an additional mechanism for
altering the bioavailability of IGFs during pregnancy. Preg-
nancy-associated plasma protein-A (PAPP-A) is secreted by
the decidua and placenta into the maternal circulation during
pregnancy (159), and cleaves IGFBP-4, a potent inhibitor of
IGF action, thereby increasing the activity of local IGFs (160).
Low circulating levels of PAPP-A in early pregnancy have
been associated with an increased risk for IUGR (161). Trans-
genic mice studies have shown that disruption of the
PAPP-A gene results in a 40% reduction in fetal growth (162).
A similar proteolytic mechanism operates for IGFBP-1. In
first trimester decidualized endometrial cells, proteolysis of
IGFBP-1 by matrix metalloprotease (MMP)-3 or MMP-9 pro-
duced fragments that could not bind IGF-I (163). This mech-
anism was disrupted by tissue inhibitors of metalloprotein-
ases, suggesting that MMPs specifically regulate placental
development by increasing the bioavailability of IGFs (163).

f. Placental IGFs. IGF-I and IGF-II are produced by the
placenta and may act as local growth regulators (164). The
mRNA abundance of placental IGF-II is greater than that of
IGF-I at all gestational ages and is found throughout the
chorionic villi, chorionic plate, basal plate, and fetal mem-
branes (146, 150). The decidua produces all the binding pro-
teins, with IGFBP-1 in greatest abundance. IGFBP-1 pro-
duced by the maternal decidua may be involved in cell to cell
communication with IGF-II produced by fetal trophoblast
cells (146). The autocrine or paracrine actions of IGF-II and
IGFBP-1 may be especially important during implantation
and trophoblast invasion (165, 166). IGFBP-3 has been local-
ized to both the microvillous and basal membranes, and
IGFBP-1 is predominantly found on the basal surface, facing
the fetal side (167).

Immunohistochemistry and in situ hybridization studies
have shown that placental expression of IGF-I is increased in
some cases of IUGR, possibly as a compensatory mechanism
for reduced fetal growth (168). However, another study
showed that IGF-I secretion from decidual explants was re-
duced in cases of IUGR, and a correlation with birth weight
was observed (169). However, across the birth weight spec-
trum, no correlation between decidual secretion of either
IGF-I or IGFBP-1 and birth weight was noted by the same
group, suggesting that reduced IGF-I in IUGR represents a
hormonal profile specific to this condition (170). Abnormal
production of IGF-I from the placenta has been proposed to
play a role in some cases of IUGR (171). Across a group of
normal and diabetic pregnancies, placental IGF-II mRNA
was positively correlated with placental weight (172).

g. The fetal IGF axis. Most IGFs in the fetal circulation
originate from fetal tissues that express IGFs and their bind-

ing proteins, which allow the fetus to adjust local levels of
growth factors, thereby modulating cellular growth and dif-
ferentiation in an autocrine or paracrine manner. Receptors
for IGFs have been identified in the human fetus from as
early as the first trimester (173), which allow IGF-I and IGF-II
to exert growth-promoting effects on fetal cells (174), includ-
ing fetal fibroblasts, fetal myoblasts (175), and fetal adrenal
cortical cells (176). IGF-I itself has been localized to many
human fetal tissues, with high expression in the lung and
intestine (175, 177). In addition, IGF-II has been found in the
fetal kidney, liver, adrenal, and muscle (175) and may be
present in larger quantities than IGF-I (178). IGF-II is thought
to be the dominant regulator of fetal adrenal growth, due to
high expression in midgestation and regulation by ACTH
(176). With the exception of the cerebral cortex, IGF-I and
IGF-II mRNA expression was also found in all fetal tissues
examined by Han et al. (179).

In the fetal tissues, IGFBP-1 has been localized to the liver,
lung, muscle, kidney, pancreas, adrenal, and intestine (180),
and de novo synthesis of IGFBP-1 to IGFBP-4 has been ob-
served in fetal liver and kidney explants (181). IGFBP-1
mRNA is predominantly found in the fetal liver, whereas the
other IGFBPs are located in most tissues of the fetus (182).
IGFs may be complexed to IGFBP-1 on the surface of fetal
cells as the pattern of immunostaining for fetal IGFs and
IGFBP-1 was found to be similar in most sites (180). The
presence of IGF-I and IGF-II mRNA and protein in most fetal
tissues suggests a local role for them in modulating growth.

There are fetal sex differences in the IGF axis. IGF-II con-
centrations in umbilical cord serum from male neonates were
significantly higher than those in female neonates (183), and
cord plasma IGF-I and IGFBP-3 were higher in female neo-
nates than in males (184). Vatten et al. (184) also found that
IGFBP-1 in the umbilical cord plasma was lower among
females compared with males. A recent study of 987 healthy
singletons found that both IGF-I and IGFBP-3 concentrations
in cord blood were higher in females than males (185). In this
study, there was no difference in IGF-II between male and
female neonates, whereas GH concentrations were higher in
males than in females (185). These findings suggest that there
are sexually dimorphic patterns of fetal growth regulation.

h. The IGF axis and fetal growth. The role of the IGF axis in
fetal growth has been studied in monozygotic twins who are
genetically identical in addition to sharing a common uterine
environment. Twin to twin transfusion syndrome causes the
growth of one twin to be compromised as it donates blood
to the other, and this condition accounts for a high rate of
perinatal mortality (186). It is thought that fetal serum IGF-I
concentrations are primarily determined by genetic influ-
ences, whereas IGF-II and IGFBP-1 concentrations are de-
termined both by maternal environment and genetic factors
(187). Donor twins with twin to twin transfusion syndrome
had significantly lower levels of IGF-II and significantly
higher levels of IGFBP-1, particularly the inhibitory phos-
phorylated isoform, compared with their recipient twin
(186). In addition, there was a positive correlation between
birth weight and IGF-II and a negative correlation with
IGFBP-1 (186). Similarly, another study of monozygotic
twins with discordant growth found lower IGF-II, similar
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IGF-I, and increased total IGFBP-1 in the growth-restricted
twin compared with the normally grown co-twin (188).
Given that the IGF-I levels in cord blood were similar and are
thought to be genetically determined, altered placental pro-
duction or placental regulation was proposed to contribute
to changes in IGF-II and IGFBP-1 in growth-restricted twins
(186). Inadequate placental dephosphorylation of IGFBP-1
may lead to alterations in the mitogenic activity of IGF-I and
of placenta nutrient transfer stimulated by IGF-I (186).

Alterations in the IGF axis are observed in dichorionic
twins and in singletons of low birth weight. Two studies in
dichorionic dizygotic twins with discordant birth weight
have found that the smaller twin had lower cord blood levels
of amino acids and IGF-I and higher levels of IGFBP-1 (188,
189) and that the IGFBP-1 concentration was negatively as-
sociated with total essential amino acids (189). Numerous
studies, conducted with a range of sample sizes (from 20 to
585 subjects), across a range of birth weights, using either
cord blood or fetal blood obtained by cordocentesis, have
found a positive relationship between cord blood IGF-I and
birth weight in normal term singleton infants (183, 184, 190–
198). A summary of these data on the relationship between
the IGF axis and fetal growth in singleton pregnancies is
presented in Table 1 (183, 184, 190–207). Some have also
found a relationship between cord blood IGF-I and other
parameters of size such as birth length (184, 193), crown-
rump length (199), ponderal index (191) or placental weight
(191, 192, 199), but not head circumference (208). In preg-
nancies complicated by IUGR, umbilical cord blood IGF-I is
reduced compared with pregnancies with normal fetal
growth (209–213). These differences may be apparent earlier
in gestation as measurements of fetal IGF-I and IGF-II by
cordocentesis showed that fetal IGF-I and third trimester
IGF-II were reduced in cases of growth restriction (211).
Some studies have not been able to demonstrate any rela-
tionship between cord blood IGF-I and birth weight in nor-
mal term infants (203, 206). In addition, the relationship
between IGF-II and birth weight is unclear with some groups
finding a positive correlation in term singletons (190, 197)
and others finding no correlation (183, 191) or no difference
between normally grown and growth-restricted groups
(209). A positive correlation has been demonstrated between
cord blood IGF-II and placental weight (194).

The relationship between cord blood IGFBPs and fetal
growth has been investigated extensively (Table 1). There is
a positive correlation between IGFBP-3 and birth weight and
an inverse correlation between IGFBP-1 and birth weight in
preterm and term infants (191, 192, 195, 197, 198, 200, 201,
204, 207). Increased cord blood IGFBP-1 (213) and reduced
IGFBP-3 have been observed in IUGR neonates (210, 211,
213). An increase in phosphorylated isoforms of IGFBP-1 and
a reduced proportion of nonphosphorylated to total IGFBP-1
was observed in SGA fetuses, suggesting that the bioactivity
of IGFBP-1 is increased in cases of poor fetal growth (214).

The relationship between maternal IGFs and fetal growth
is less well characterized (Table 1). A positive relationship
between maternal IGF-I and birth weight and an inverse
relationship between maternal IGFBP-1 and birth weight was
observed by Boyne et al. (198) in a cohort of 325 pregnant
women after 35 wk gestation. Reduced maternal IGF-I (141,

215–217), IGF-II (217), and elevated IGFBP-1 (216) have been
described in cases of fetal growth restriction. However, other
studies could not demonstrate any association between ma-
ternal IGF-I or IGFBP-1 measured at any stage of pregnancy,
with birth weight or the development of IUGR (205, 210, 218).
Similarly, several studies report no correlation between ma-
ternal IGFBP-3 and fetal growth (195). These studies differ in
the number of subjects and the birth weight ranges examined
and the gestational age at which the samples were collected.
Despite the differences in results obtained from the various
studies, it is clear that the IGF axis has a crucial role to play
in modulating normal fetal growth during human preg-
nancy, with IGF-I, IGFBP-1, and IGFBP-3 implicated as hav-
ing central roles in fetal growth and IGF-II having an im-
portant role in placental growth.

4. Effects of endogenous and exogenous glucocorticoids on fetal
growth and development. Glucocorticoids are essential for the
development and maturation of fetal organs before birth. In
humans and many animal species, there is a rise in cortisol
concentrations during late pregnancy that parallels the in-
creased maturity of fetal organs (219). In the sheep, infusion
of ACTH, cortisol, or dexamethasone into the preterm fetus
resulted in delivery of lambs within 4–7 d (220, 221). Adrenal
growth and lung maturation were accelerated compared
with term lambs, suggesting an effect of glucocorticoids on
fetal lung development (220, 221). Glucocorticoids contribute
to maturation of other organs including the thymus, gastro-
intestinal tract (222, 223), liver (224), and kidney (225). In-
cubation of human fetal lung explants with dexamethasone
stimulates fatty acid synthesis and fatty acid synthetase ac-
tivity, which are involved in surfactant production (226).
Many of the studies on fetal organ maturation by glucocor-
ticoids have been carried out in animals such as the sheep,
which may differ significantly from the human.

Betamethasone administration to women at risk of pre-
term delivery has confirmed the effectiveness of glucocorti-
coids in maturing the fetal lungs because it lowers the inci-
dence of neonatal respiratory distress syndrome and its
associated mortality (227). Glucocorticoid treatment has been
shown to result in an increase in the ratio of lecithin to
sphingomyelin in amniotic fluid, an indicator of fetal lung
development and surfactant synthesis (228, 229). Today, an-
tenatal glucocorticoids are given to 7–10% of pregnant
women in Europe and North America (230) during preterm
labor, to mature the fetal lungs and reduce the risk of neo-
natal morbidity and mortality. Several observational cohort
studies have suggested that high doses of exogenous glu-
cocorticoids may have adverse effects on the fetus, such as
an increased incidence of gastroesophageal reflux (231) and
modifications in fetal heart rate (232, 233). In vitro studies
suggest that effects on the fetal vascular system may be due
to the vasodilatory properties of glucocorticoids (234, 235). A
significant reduction in birth weight in preterm infants de-
livered between 30 and 32 wk gestation, by as much as 161 g,
has been observed after antenatal dexamethasone treatment,
in comparison with an historical cohort that did not receive
dexamethasone (236). In observational studies, multiple
doses of antenatal glucocorticoids have been linked to small
reductions in fetal growth compared with single doses (237).
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Repeated courses of betamethasone were associated with a
4% reduction in head circumference and a 9% reduction in
birth weight in preterm infants born before 33 wk gestation,

compared with single doses of betamethasone (238). How-
ever, these data should be interpreted with caution, because
the studies were observational, with a lack of control groups,

TABLE 1. Studies of the relationship between the IGF axis and fetal growth in singleton pregnancies

Study Sample size Sample type Measure of fetal growth
Correlation with:

IGF-I IGF-II IGFBP-1 IGFBP-3

Gluckman et al., 1983
(183)

206 Umbilical cord serum Birth weight �ve None

Birth length �ve None
Bennett et al., 1983

(190)
43 (11 PTD) Umbilical cord blood Birth weight �ve �ve

Ashton et al., 1985 (199) 20 Fetal plasma (15–23 wk) Fetal weight �ve
Placental weight �ve
Crown-rump length �ve
Crown-heel length �ve

Fant et al., 1993 (191) 44 Umbilical cord serum Birth weight �ve None None �ve
Placental weight �ve None None �ve
Ponderal index �ve �ve None �ve

Verhaeghe et al., 1993
(200)

538 Umbilical cord serum Birth weight �ve

Wang et al., 1993 (201) 44 (PTD) Umbilical cord serum Birth weight �ve
Maternal serum Birth weight None

Osorio et al., 1996 (202) 44 Umbilical cord serum Birth weight �ve None �ve
Ponderal index �ve None �ve
Placental weight �ve None �ve

Ostlund et al., 1997
(192)

27 Fetal serum from cordo-
centesis

Birth weight �ve �ve

Placental weight �ve
Klauwer et al., 1997

(193)
138 Umbilical vein serum Birth weight �ve None None �ve

Birth length �ve None None
Ong et al., 2000 (194) 199 Umbilical cord blood Birth weight �ve �ve �ve

Birth length �ve �ve �ve
Head circumference �ve
Ponderal index �ve �ve �ve �ve
Placental weight �ve �ve �ve �ve

Halhali et al., 2000 (203) 48 (24 PE, 24 NT) Umbilical cord serum Birth weight �ve (PE)
Birth length �ve (PE)

Maternal serum (late
gestation)

Birth weight �ve (PE)

Birth length �ve (PE)
Orbak et al., 2001 (195) 50 Umbilical vein blood Birth weight �ve �ve

Maternal serum Birth weight None None
Ochoa et al., 2001 (204) 22 Umbilical vein serum Birth weight �ve �ve
Christou et al., 2001

(196)
142 Umbilical cord serum Birth weight �ve None None

Shibata et al., 2002
(197)

101 Umbilical vein plasma Birth weight �ve �ve �ve

Vatten et al., 2002 (184) 585 Umbilical cord plasma Birth weight �ve �ve
Birth length �ve �ve
Ponderal index �ve

Verhaeghe et al., 2002
(205)

289 (24–29 wk) Maternal serum Birth weight None None

Diaz et al., 2002 (206) 26 (15 PE, 11 NT) Umbilical cord serum Birth weight �ve (PE)
Maternal serum (late

gestation)
Birth weight �ve (PE)

Boyne et al., 2003 (198) 325 Umbilical cord serum Birth weight �ve �ve
Abdominal circumference �ve �ve
Placental weight �ve

Maternal serum (9, 25, 35
wk gestation)

Birth weight �ve (35 wk) �ve (35 wk)

Abdominal circumference �ve (35 wk)
Placental weight �ve

Verhaeghe et al., 2003
(207)

76 (PTD) Umbilical vein blood Birth weight �ve �ve

Birth length �ve �ve
Placental weight �ve �ve
Ponderal index �ve None

PE, Preeclampsia; NT, normotensive; PTD, preterm delivery.
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potential for confounding, and, in some cases, post hoc anal-
ysis. In addition, the effect of multiple courses on birth
weight was generally quite small [39 g decrease compared
with single courses at the same gestational age in the study
from Banks et al. (237)], and differences in other measures of
fetal growth, such as head circumference, were sometimes
not observed. Recent evidence from multicenter randomized
controlled trials suggests that there is no additional decrease
in fetal growth when repeated courses of antenatal steroids
are used compared with single doses (239, 240). Moreover,
long-term follow-up studies of infants treated with antenatal
corticosteroids during randomized trials have also failed to
show negative effects of steroid treatment on blood pressure,
both in childhood (241) or young adulthood (242, 243).

Although these data from randomized controlled trials in
humans are reassuring, many animal studies have demon-
strated that administration of exogenous synthetic glucocor-
ticoids can inhibit fetal growth. Synthetic glucocorticoid
treatment to pregnant ewes in midgestation results in re-
duced fetal weight (244), with the greatest effect in animals
receiving repeated doses (245). In the sheep model, there are
differences in the effects of betamethasone on fetal growth,
depending on whether it is administered directly to the fetus
or administered to the mother (246). Moss et al. (246) found
that repeated maternal, but not fetal, injections of betametha-
sone, reduced birth weight and resulted in reduced fetal
calcium and lactate concentrations. Reduced body weight or
organ weight at birth after glucocorticoid treatment during
pregnancy has also been demonstrated in mice (247), rats
(248), rabbits (249), rhesus monkeys (250), and guinea pigs
(251). Other effects of glucocorticoid administration in ani-
mals included decreased brain weight, neurological damage
(252–254), and placental lesions (255). Fowden et al. (256)
examined the mitogenic effect of endogenous cortisol on
sheep fetal growth. In late gestation, the crown-rump length
decreased in parallel with the fetal cortisol surge, and this
decrease in growth could be prevented by fetal adrenalec-
tomy (256). This study linked the rise in cortisol in late
gestation with a reduction in fetal growth in sheep. However,
glucocorticoids also stimulate expression of ovine placental
17�-hydroxylase and parturition with attendant changes in
uterine metabolism (257). The effects of glucocorticoids on
fetal growth may also be mediated by changes in IGF-I. In
pregnant rats, treatment with betamethasone or dexameth-
asone decreased maternal plasma IGF-I, which was related
to reduced liver-to-body weight ratio (258, 259). In human
preterm infants treated with dexamethasone postnatally,
there was evidence that the growth-suppressing effects of
dexamethasone may be mediated by suppression of the IGF
axis (260). Indirectly or directly, glucocorticoids have a ben-
eficial effect on fetal organ maturation before birth but may
also have the potential to reduce fetal growth.

a. The placental glucocorticoid barrier, 11�-HSD. In human
pregnancy, endogenous maternal cortisol concentrations are
5–10 times higher than fetal cortisol concentrations (261–263),
and this difference is maintained by the presence of 11�-
HSD2 in the placenta, which acts as a barrier enzyme to
control the passage of cortisol from mother to fetus. Two
isoforms of 11�-HSD, which interconvert glucocorticoids

with their inactive 11-keto metabolites, have been cloned and
characterized in humans (264, 265). The reduced nicotin-
amide adenine dinucleotide phosphate-dependent 11�-HSD
type 1 (11�-HSD1) catalyzes the bidirectional interconver-
sion of cortisol and cortisone, but acts primarily as an oxo-
reductase, converting cortisone to cortisol, due to its higher
affinity for cortisone [Michaelis-Menten constant (Km) in the
nanomolar range] compared with cortisol (Km in the micro-
molar range) (266). The nicotinamide adenine dinucleotide-
dependent 11�-HSD2 is a high-affinity unidirectional en-
zyme: it catalyzes only the dehydrogenase reaction, which
converts active cortisol to inactive cortisone (267). 11�-HSD1
and 11�-HSD2 are members of the short-chain alcohol de-
hydrogenase superfamily (268), sharing about 21% homol-
ogy (269), and the genes encoding them are found on chro-
mosome 1 (264) and chromosome 16 (270), respectively.

11�-HSD1 is mostly found in tissues such as the liver (271),
adipose tissue (271), lung (272), and testis (273) with its main
function being to increase the availability of glucocorticoids
for the glucocorticoid receptor (GR), allowing prereceptor
control of local glucocorticoid action (269). In the gestational
tissues, 11�-HSD1 is found in the decidua (271, 274) and
chorion (275), and the endothelium of placental villous tissue
(275), where it regulates the effect of cortisol on other pla-
cental pathways such as prostaglandin (PG) biosynthesis and
metabolism (276, 277).

11�-HSD2 is found in specific tissues such as the kidney
(278, 279), colon (280), adrenal (271), and the placenta (279,
281). Its presence in mineralocorticoid target tissues, espe-
cially the kidney, is necessary to protect the mineralocorti-
coid receptor (MR) from occupation by cortisol (282). Cortisol
has a much higher plasma concentration than aldosterone,
the “natural” mineralocorticoid, but the two compounds
have equal affinity for the MR (283). The 11-keto metabolites
formed by 11�-HSD2 are unable to bind to the MR, whereas
aldosterone is not metabolized by 11�-HSD2 and therefore
remains active. Overactivation of the MR by cortisol leads to
sodium retention and potassium excretion in the renal tu-
bules, resulting in hypertension and suppression of the re-
nin-angiotensin system (284). This can occur after excess
ingestion of licorice, which contains the 11�-HSD inhibitor,
glycyrrhetinic acid (285), and in a congenital disease known
as apparent mineralocorticoid excess (AME), which results
from mutations of the 11�-HSD2 gene (286).

The primary function of placental 11�-HSD2 is to maintain
the glucocorticoid balance and protect the fetus from the high
concentrations of endogenous maternal glucocorticoids
(287). Synthetic glucocorticoids such as dexamethasone and
betamethasone are not extensively metabolized by placental
11�-HSD2, possibly due to protection from their 9-halogen
group (288, 289). In addition to its barrier role, 11�-HSD2 in
the placenta may also protect the MR as in tissues such as the
kidney (290, 291). Hirasawa et al. (290) colocalized 11�-HSD2
and MR immunoreactivity and mRNA in the placenta and
suggested a role for 11�-HSD2 in regulation of maternal-fetal
electrolyte and water transport in the placenta in addition to
its barrier role. Driver et al. (291, 292) have also found min-
eralocorticoid-responsive genes and a functional MR in hu-
man cytotrophoblast cells, suggesting that 11�-HSD2 may be
involved in placental sodium transport.
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The ability of the placenta to metabolize cortisol and other
glucocorticoids to 11-keto products was first described by
Osinski (281) in 1960. An immunohistochemical study by
Krozowski et al. (279) found that 11�-HSD2 was localized to
syncytiotrophoblast cells lining the chorionic villi. Similarly,
Hirasawa et al. (290) detected 11�-HSD2 immunoreactivity in
syncytiotrophoblast from 5 wk to term. In placental bed
biopsies, 11�-HSD2 immunoreactivity was found in fused
syncytiotrophoblast, invasive extravillous trophoblast, and
trophoblast lining the maternal spiral arteries (292). Sun et al.
(275) found 11�-HSD2 mRNA (but not 11�-HSD1) in the
placenta and no expression of 11�-HSD2 in the amnion,
chorion, or deciduas. Activities of both the type 1 and type
2 enzyme were demonstrated in the human perfused pla-
centa by Sun et al. (293), whereas Benediktsson et al. (287)
found that most of the maternally administered cortisol was
converted to cortisone with no cortisone to cortisol conver-
sion detected. Dodds et al. (294) also demonstrated cortisol to
cortisone conversion in the perfused placenta, which could
be eliminated by coperfusion with the 11�-HSD inhibitor,
glycyrrhetinic acid.

Immunohistochemical studies have localized 11�-HSD1 to
the chorion trophoblast, amnion epithelial cells, the endo-
thelium of placental and umbilical blood vessels, and the
decidua (275). Others have confirmed the presence of 11�-
HSD1 in decidual stromal cells (271, 292). 11�-HSD1 mRNA
was found in the amnion and placenta, with the greatest
abundance in the chorion (275).

Human studies on changes in the expression and activity
of the 11�-HSD isozymes in the placenta and fetal mem-
branes throughout gestation have produced conflicting re-
sults. In 1973, Beitins et al. (295) demonstrated that at term,
75% of the cortisol found in the fetus was of fetal origin,
whereas all the cortisone in the fetus was of maternal origin.
This suggested that placental 11�-HSD2 was acting as an
effective glucocorticoid barrier at term and that fetal cortisol
was mainly derived from the fetal adrenal and not from a
maternal source (295). Similar work from Murphy et al. (296)
indicated that high levels of 11�-HSD activity were present
in early gestation (13–18 wk), with 85% of infused maternal
cortisol converted to cortisone by the placenta. Giannopoulos
et al. (297) examined placental 11�-HSD activity and found
that type 2 activity predominated and that this activity de-
creased from early (8–12 wk) to late (38–40 wk) gestation.
Similarly, Blasco et al. (298) described a decrease in placental
11�-HSD2 activity from early to late gestation. Studies have
shown an increase in 11�-HSD1 conversion of cortisone to
cortisol in the fetal membranes with advancing gestational
age (299, 300). No labor-associated changes in 11�-HSD2
mRNA abundance or enzyme activity have been described
(275, 301, 302). These studies suggest that the barrier function
of 11�-HSD, although effective throughout pregnancy, may
decrease with increasing gestation.

More recent studies have described an increase in 11�-
HSD2 activity (303, 304) and mRNA abundance (305) in the
placenta from mid to late gestation. Shams et al. (304) com-
pared samples collected in the first and second trimester with
preterm samples (27–36 wk gestation) and term placenta
(39–40 wk gestation). They did not examine any trends
within the term group, but found an overall increase in

placental 11�-HSD2 activity across the whole of pregnancy
(304). Similarly, Schoof et al. (305) compared a preterm group
with a term group, with a wide range of gestational ages from
18–41 wk, finding an overall increase in 11�-HSD2 mRNA.
In 2003, Kajantie et al. (306) published a report on 107 small
preterm placentae (22–32 wk) and demonstrated a fall in
placental 11�-HSD2 activity rate as gestation progressed. In
the guinea pig, a species with a hemomonochorial placental
structure similar to that of the human, 11�-HSD2 activity
falls significantly in late gestation (307). Murphy and Clifton
(302) found a decrease in 11�-HSD2 activity in the last few
weeks of human gestation and an increase in placental 11�-
HSD1 mRNA abundance with spontaneous labor. This may
be a mechanism by which cortisol concentrations rise at term
to regulate fetal maturation and activate pathways associ-
ated with labor (302).

b. Placental 11�-HSD2 and fetal growth. Placental 11�-HSD2
is important in the regulation of fetal growth, and reductions
in 11�-HSD2 activity have been associated with reduced
human fetal growth, as outlined in Table 2 (54, 55, 304, 306,
308–313). Shams et al. (304) demonstrated that there was a
significant reduction in enzyme activity in placentae from
pregnancies complicated by IUGR compared with normally
grown term deliveries and appropriately grown preterm
deliveries. Further work demonstrated that there were also
reductions in 11�-HSD2 mRNA levels but no mutations in
the gene (311). In pregnant women with asthma, we found
that reduced birth weight in female neonates was specifically
associated with reduced placental 11�-HSD2 activity, but not
protein or mRNA levels, which suggests posttranslational
regulation (54, 55). One study found a positive correlation
between placental 11�-HSD2 activity and birth weight in 27
term placentae (308). However, a larger study from this
group with 111 samples was unable to confirm this result
(309). In the latter report, only one neonate was low birth
weight, suggesting that the correlation between 11�-HSD2
activity and birth weight may not be apparent within the
normal weight range, but may become more significant
when low birth weight infants are studied (309). Hofmann et
al. (312) found no correlation between placental 11�-HSD2
activity and birth weight in healthy term pregnancies or in
pregnancies complicated by hypertension or IUGR. How-
ever, others have reported reduced 11�-HSD2 activity or
mRNA in placentae from patients with preeclampsia, where
there was decreased fetal growth, compared with normo-
tensive pregnancies (310, 313). Kajantie et al. (306) observed
a positive correlation between relative birth weight and pla-
cental 11�-HSD2 activity in small preterm infants between 22
and 32 wk gestation. In addition, lower birth weight was
associated with reduced umbilical cord vein cortisone, con-
firming the reduction in transplacental cortisol to cortisone
conversion in association with reduced fetal growth (306).

AME results from mutations of the 11�-HSD2 gene and is
associated with moderate IUGR (314, 315). Kitanaka et al.
(314) found that 17 of 18 AME patients had a birth weight less
than 2700 g. Placental 11�-HSD2 activity was examined in a
28-wk twin stillbirth from a family with two other children
with AME (315). Placental 11�-HSD2 activity was approxi-
mately 15% of that in five gestational age-matched controls,

Murphy et al. • Endocrine Regulation of Fetal Growth Endocrine Reviews, April 2006, 27(2):141–169 151

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article-abstract/27/2/141/2355234 by guest on 25 February 2019



and immunohistochemical staining for 11�-HSD2 was vir-
tually absent in the AME placenta (315). Both the siblings
with AME and the placenta were shown to have a point
mutation in exon V of the 11�-HSD2 gene (315). There have
been other reports of stillbirth in families with 11�-HSD2
mutations and AME (316). These studies suggest that re-
duced 11�-HSD2 activity may be related to reduced fetal
growth and possibly an increased risk of fetal death.

c. 11�-HSD2 in the fetus. The midgestation human fetus
(16–19 wk) contains 11�-HSD2 mRNA and activity, but not
11�-HSD1, in the kidney, lung (317), gonad, liver, adrenal
(318), and colon (319–321). 11�-HSD2 is colocalized with the

GR (322) or MR (323) in many tissues. The presence of pla-
cental 11�-HSD2, high levels of 11�-HSD2 activity in fetal
tissues, and the absence of 11�-HSD1 in the fetus all con-
tribute to a predominance of cortisone over cortisol in the
fetal circulation (324). The presence of 11�-HSD2 enzyme in
the fetal tissues may serve to locally regulate the positive and
negative effects of glucocorticoids on the fetus.

d. Regulation of placental 11�-HSD2. Placental 11�-HSD2 is
an important modulator of fetal glucocorticoid exposure, and
it is regulated by many placental hormones and factors as-
sociated with pregnancy, including estradiol, progesterone,
and PGs. In syncytiotrophoblast cell cultures, progesterone

TABLE 2. Studies of the relationship between placental 11�-HSD2 and human fetal growth

Study Sample
size Sample type Population 11�-HSD2 assay Findings

Stewart et al.,
1995 (308)

27 Placental homogenates Term Activity Positive correlation
between activity and
birth weight, but not
with placental weight

Rogerson et al.,
1997 (309)

111 Placental homogenates Term Activity, mRNA
(Northern blot)

No correlation between
activity and birth
weight

Shams et al., 1998
(304)

101 Placental homogenates
(activity), fixed
placenta (IHC)

First trimester (n � 16),
second trimester (n � 9),
PTD AGA (n � 14),
term (n � 50), IUGR
(n � 12)

Activity, IHC Activity reduced in IUGR
compared to term or
preterm AGA groups

McCalla et al.,
1998 (310)

28 Placental homogenates Normotensive (n � 17),
PE (n � 11)

Activity, cord blood
cortisol

Activity lower in PE and
accompanied by an
increase in cord blood
cortisol

McTernan et al.,
2001 (311)

86 Placental tissue First trimester (n � 35),
second trimester (n � 6),
PTD (n � 4), term
(n � 22), IUGR (n � 19)

mRNA, gene mutations Decreased mRNA in
IUGR compared to
gestational age
matched controls. No
mutations found in
11�-HSD2 gene

Hofmann et al.,
2001 (312)

195 Healthy controls (n � 133),
PIH (n � 26), PIH �
proteinuria (n � 21),
IUGR (n � 15)

Activity No correlation between
activity and birth
weight in healthy, PIH,
or IUGR

Schoof et al., 2001
(313)

55 Placental tissue Healthy controls (n � 20),
PTD (n � 17), PE
(n � 18)

mRNA (quantitative
RT-PCR)

Activity 3-fold lower in
PE compared to
healthy controls.
Correlation between
mRNA and birth
weight and placenta
weight in term
placentae

Murphy et al.,
2002 (54)

74 Placental microsomal
homogenates (activity
and protein) and
placental tissue
(mRNA)

Healthy controls (n � 11),
asthma (n � 63)

Activity, protein
(Western), mRNA
(quantitative RT-PCR)

Reduced activity in
women with asthma
who did not use ICS
associated with lower
birth weight centile

Murphy et al.,
2003 (55)

65 Placental microsomal
homogenates (activity
and protein) and
placental tissue
(mRNA)

Healthy controls (n � 11),
asthma no ICS (n � 14),
asthma � ICS (n � 40)

Activity Reduced activity in
female neonates
(mothers with asthma,
no ICS use) in
association with
reduced birth weight

Kajantie et al.,
2003 (306)

107 Placental homogenates Small preterm Activity rate, total
activity, cord vein
cortisol and cortisone

Positive correlation
between birth weight
and activity rate, total
activity, and cord blood
cortisone

IHC, Immunohistochemistry; PTD, preterm delivery; AGA, appropriate for gestational age; PE, preeclampsia; PIH, pregnancy-induced
hypertension; ICS, inhaled corticosteroid.
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reduced 11�-HSD2 activity, in a dose-dependent manner,
through a non-receptor-mediated mechanism and also re-
duced 11�-HSD2 mRNA abundance, an effect that was re-
versed by treatment with progesterone receptor antagonists
(325). In addition, Pepe and Albrecht (326) reported that
11�-HSD2 activity in human and baboon placental homog-
enates was inhibited by progesterone. Estradiol was found to
significantly decrease activity but not mRNA of 11�-HSD2 in
cultured placental cells (325). Nitric oxide donors inhibit
11�-HSD2 mRNA and activity in syncytiotrophoblast cells
cultured for 72 h, through a cyclic GMP-mediated pathway
(327). Activators of the cAMP pathway, such as forskolin,
increase 11�-HSD2 activity and mRNA expression in JEG-3
choriocarcinoma cells (328) and syncytiotrophoblast cells
(325), whereas activation of the protein kinase C pathway by
phorbol 12-myristate 13-acetate had no effect on placental
11�-HSD2 (325, 328). ATP has been shown to increase pla-
cental 11�-HSD2 activity in microsomes via a mechanism
independent of phosphorylation (329). Tremblay et al. (330)
found that retinoic acids, the major metabolites of vitamin A,
stimulated 11�-HSD2 activity in JEG-3 cells in a dose-de-
pendent manner via an increase in mRNA expression.

Hardy et al. (331) examined the effect of the PGs, PGE2 and
PGF2�, and the leukotriene LTB4 on 11�-HSD2 activity and
gene expression in JEG-3 cells. PGE2 and PGF2� reduced
11�-HSD2 activity to 75% of the untreated level. Blocking PG
synthesis with the cyclooxygenase inhibitor indomethacin,
however, did not reverse the effect but also resulted in in-
hibition. LTB4 treatment resulted in a dose-dependent inhi-
bition of 11�-HSD2 activity. Importantly, this study showed
that there were no corresponding changes in the mRNA
abundance of 11�-HSD2 by treatment with PGE2, PGF2�, or
LTB4, indicating that their effect was posttranslational (331).

Recent work from Alfaidy et al. (332) showed that oxygen
may be an important regulator of placental 11�-HSD2. In this
study, incubation of first-trimester placental villous explants
or trophoblast cell cultures from term placentae under 20%
O2 led to a significant increase in 11�-HSD2 protein expres-
sion and activity compared with incubation under 3% O2
(332). Similarly, Hardy and Yang (333) found that 11�-HSD2
protein and activity more than doubled when cytotropho-
blast cells differentiated into syncytiotrophoblasts under
20% O2. However, when cells were cultured under 1% O2,
they did not differentiate and 11�-HSD2 was not increased
(333). This may be a mechanism by which maternal hypoxia
influences fetal growth.

11�-HSD2 activity is inhibited by calcium in placental
microsomes and in JEG-3 cells via a posttranslational mech-
anism (334). Calcium, previously shown to inhibit placental
11�-HSD2 activity, is a common second messenger for leu-
kotrienes and PGs (331). Inhibition by calcium was reversed
by the addition of a calcium chelator, and inhibition did not
alter the binding capacity for cortisol and could not be over-
come by the addition of extra cofactor, indicating that the
effect was mediated through a change in the enzyme’s cat-
alytic efficiency (334). The catecholamines, epinephrine and
norepinephrine, also inhibited placental 11�-HSD2 through
a decrease in mRNA in trophoblast cells (335). Because cat-
echolamines are released during stress, this may be a mech-
anism linking prenatal stress with altered fetal development.

The regulation of 11�-HSD2 activity has also been studied
in other cell types. In the kidney, progesterone and its me-
tabolites, such as 5�-dihydro-progesterone, have been
shown to inhibit microsomal 11�-HSD2 (336). Hypoxia also
inhibited 11�-HSD2 activity in a renal epithelial cell line, and
this study demonstrated reduced renal 11�-HSD2 in healthy
men as a result of ascending to high altitude (337). In bron-
chial epithelial cells, dexamethasone was found to increase
11�-HSD2 mRNA and protein and increase activity over 72 h
in a dose-dependent manner (338). Previous work in osteo-
sarcoma cells indicated that the proinflammatory cytokines,
TNF-� and IL-1�, inhibit both activity and mRNA expression
of 11�-HSD2 in a dose-dependent manner (339). However,
the effect of these and other inflammatory cytokines on pla-
cental 11�-HSD2 has not been examined.

Glucocorticoids have an important role in the regulation
of fetal development, i.e., promoting maturation of organs
required for extrauterine survival. An important prereceptor
mechanism exists to control the actions of glucocorticoids
during pregnancy in the form of placental and fetal 11�-
HSD2. Alterations in the activity of the placental 11�-HSD2
barrier, which result in an increase in maternal glucocorti-
coids crossing to the fetus, may have a deleterious effect on
fetal growth and postnatal development.

e. The role of 11�-HSD2 in fetal programming. Glucocorti-
coids are thought to have a role in the fetal origins of adult
disease. Although no human studies have investigated the
relationship between changes in placental 11�-HSD2 and
health outcomes in later life, animal studies have implicated
decreased 11�-HSD2 activity in fetal programming.

In rats, Benediktsson et al. (248) showed a positive corre-
lation between placental 11�-HSD2 activity and term fetal
weight and a negative correlation with placental weight.
Treatment of pregnant rats with dexamethasone, a steroid
not extensively metabolized by placental 11�-HSD2, resulted
in a decrease in maternal weight gain, reduced birth weight,
and significantly raised blood pressure 140–150 d after birth
compared with untreated rats (248). This study proposed
that the relationship between low birth weight, high placen-
tal weight, and increased adult blood pressure may be me-
diated by glucocorticoid exposure in utero (248).

Levitt et al. (340) found that administration of dexameth-
asone to rats in late pregnancy resulted in an 11% reduction
in birth weight and elevated blood pressure in offspring at
16 wk of age. The same group later demonstrated that in-
hibition of placental 11�-HSD2 by carbenoxolone treatment
throughout pregnancy gave similar results (341). They ob-
served a 20% decrease in birth weight and elevated blood
pressure in adult offspring. When mothers were adrenalec-
tomized, this effect did not occur, highlighting the impor-
tance of exposure to maternally derived endogenous glu-
cocorticoids (341). Similar studies by another group found
that maternal carbenoxolone treatment in pregnant rats re-
sulted in smaller offspring with glucose intolerance in later
life and reduced hepatic 11�-HSD1 and reduced renal 11�-
HSD2 gene expression (342).

Maternal protein restriction has been shown to decrease
birth weight and placental 11�-HSD2 activity in rats (343). In
early adulthood, offspring also had raised systolic blood
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pressure (343). The study by Langley-Evans et al. proposed
that maternal undernutrition results in fetal glucocorticoid
exposure, which leads to the programming of hypertension
in later life (343). Further work demonstrated that a low
protein maternal diet reduced 11�-HSD2 gene expression in
the rat placenta and in the fetal and neonatal kidney and
adrenal (344). The authors suggested that altered exposure of
the fetus and, in particular, the fetal kidney to glucocorticoids
may lead to the observed increase in GR protein and mRNA
expression in the kidney, which was a possible mechanism
for raised blood pressure in later life (344).

A recent study by Bloomfield et al. (345) has suggested that
factors other than glucocorticoids may play a role in fetal
programming. In the sheep, they found that maternal un-
dernutrition for 60 d before conception, and for the first 30 d
after mating, resulted in alterations in the development of the
fetal hypothalamic-pituitary-adrenal (HPA) axis. However,
these changes occurred in the absence of elevated maternal
cortisol concentrations. In fact, maternal cortisol and ACTH
levels were greatly suppressed during undernutrition, sug-
gesting that programming of the fetal HPA axis may occur
without excess glucocorticoid exposure (345).

f. Sexually dimorphic responses to glucocorticoids in the human
fetus. Studies in humans and animals indicate that there are
fetal sex-specific responses to glucocorticoids. These data
have implications for understanding the fetal response to
stress, responses to antenatal glucocorticoid treatment, and
long-term programming. We have collected information
from pregnant women with and without asthma and found
that the presence of asthma had sex-specific effects on fetal
growth and placental function. Pregnant women with
asthma, who did not use preventative inhaled steroid med-
ication, had smaller female neonates (55). The reduction in
female fetal growth was accompanied by a significant re-
duction in placental 11�-HSD2 activity (55). Overall, placen-
tal 11�-HSD2 activity was higher in samples collected from
female fetuses than males (55, 56), suggesting that placental
glucocorticoid metabolism differs according to the sex of the
fetus. Similar results have previously been reported in the
mouse placenta (346) and adult human kidney 11�-HSD2
(347). This may contribute to altered sensitivities to the effects
of glucocorticoids in male and female fetuses (56). Despite
the reduction in placental 11�-HSD2 activity with maternal
asthma and female fetal sex, there was a nonsignificant al-
teration in cord blood cortisol, but a significant reduction in
cord blood estriol was observed (55). These data suggest that
alterations in glucocorticoid metabolism in the female fetus
result in downstream effects on glucocorticoid-regulated
pathways. In the presence of maternal asthma, placental
11�-HSD2 activity was unaltered in males, and cord blood
cortisol levels were similar to those in females, whereas there
was no change in estriol. These data suggested that the male
fetus was less sensitive to the effects of glucocorticoids com-
pared with the female fetus.

These differences in fetal response to glucocorticoids may
have been due to alterations in GR or MR expression. In
asthmatic pregnancies, decreased placental GR� and MR
mRNA was observed in female fetuses, whereas there was an
increase in placental GR� and MR mRNA in male fetuses

(56). There may also be differences in receptor expression at
the level of the promoter, due to regulation by sex steroids.

Several factors responsible for fetal growth regulation dur-
ing human pregnancy may be altered in a fetal sex-specific
manner, which could contribute to increased susceptibility to
low birth weight in the male fetus, as observed with maternal
smoking (348) and caffeine intake (349), or to an increased
susceptibility to low birth weight in the female fetus, as
observed with hypertension-associated IUGR (348).

5. Imprinted genes in placental and fetal development. Genomic
imprinting may be the result of an evolutionary conflict
between maternal and paternal alleles, particularly in the
context of nutrient transfer from mother to fetus (350). Im-
printing refers to the inheritance of some genes primarily
from the maternal allele, and of others primarily from the
paternal allele (351). In mammals, many imprinted genes
have roles in fetal growth and development and influence
placental function (352), being expressed in the placenta and
fetus, where they act to control resource utilization (353). In
general, paternally inherited genes increase the transfer of
resources (nutrients) to the fetus, thereby promoting growth;
conversely, maternally inherited genes reduce nutrient trans-
fer to the fetus, thereby conserving maternal resources for
future offspring (353).

The IGF-II gene is paternally expressed, whereas the IGF-II
receptor gene is maternally expressed. Mutations of these
genes are associated with disorders of fetal growth, such as
the fetal and postnatal overgrowth observed in Beckwith-
Wiedemann syndrome, as a result of overexpression of
IGF-II (354). Mouse knockout studies have also demon-
strated that altered expression of imprinted genes can cause
changes in the ability of the placenta to exchange nutrients
by altering the thickness and surface area of exchange in
placental tissues (355). It is possible that imprinted genes
may also play a role in the regulation of placental blood
vessel development and the control of nutrient transporter
expression and, in this way, they may also indirectly control
fetal growth and development (353).

Genomic imprinting is an example of the delicate balance
that is human fetal growth regulation. The needs of the
mother must be protected, while also allowing the fetus to
grow to its genetic potential. The mother and fetus interact
via endocrine signals from the placenta, which control the
complex process of fetal growth. Environmental influences
that alter any aspect of placental function, such as blood flow,
nutrient transporter expression, glucocorticoid metabolism,
or hormone production, play a significant role in reducing
fetal growth, with consequences for long-term health.

6. Summary. Figure 1 summarizes the interactions between
the fetus, placenta, and mother described in this section. The
fetus communicates with the mother via the placenta. The
maternal genome and environment interact to influence ma-
ternal development before pregnancy. Several factors, in-
cluding maternal health, smoking, hypoxia, and nutritional
status, influence the maternal pregnancy state. Hormones
produced by the placenta influence maternal metabolism
and behavior, nutrient intake, and uterine artery blood flow.
These changes are necessary to promote placental develop-
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ment and growth. Placental trophoblast invasion and the
ensuing increase in blood flow ensure the growth of the
placenta, allowing it to produce hormones for signaling be-
tween the mother and fetus and transporters to transfer
nutrients and waste between the mother and fetus. The pla-
centa also maintains the glucocorticoid balance between the
mother and fetus. Adequate placental function promotes
fetal growth, which is influenced by the fetal genome and
maternal constraint. A dysfunction in any of these pathways
can lead to alterations in fetal growth, which has adverse
consequences both in the short term and long term.

III. Pathological Effects of Poor Fetal Growth

A. Short-term effects of low birth weight

Low birth weight, independent of prematurity, is a sig-
nificant contributor to neonatal morbidity and mortality (1)
and leads to substantial health care costs (356). The World
Health Organization defines low birth weight as birth weight
less than 2500 g (357). SGA neonates are less than the 10th
percentile for gestational age relative to the reference pop-
ulation (1). Some of these neonates may be healthy but are
genetically destined to be born small (31). On the other hand,

IUGR refers to a pathological process, where the fetus does
not reach its genetic growth potential due to an event or
events that occur in utero (31). Clinically, it can be difficult to
distinguish between these manifestations of low birth
weight; however, adjusting for variables such as maternal
size, ethnicity, and parity can increase the sensitivity of re-
peat ultrasounds in detecting and distinguishing between
SGA and IUGR infants (31). In addition, abnormal Doppler
velocimetry accompanied by low estimated fetal weight sug-
gests IUGR, whereas the SGA fetus often has a slower growth
trajectory but normal Doppler results (31).

Low birth weight is a significant health problem world-
wide. There are more than 13 million low birth weight infants
born in developing countries each year, the majority in Asia,
followed by Africa and Latin America (358). In the United
States, low birth weight affects approximately 5–6% of live
births in Caucasians and 10–12.5% of live births in African
Americans (359). Low birth weight is associated with an
increased risk of morbidities including birth asphyxia, meco-
nium aspiration, persistent fetal circulation, hypoglycemia,
hypothermia, and hypocalcemia (1, 360) and an increase in
mortality up to 15 yr of age, which is primarily accounted for
by higher infant mortality rates (361). Neonatal mortality
within a population can be reduced by 30–50% following a

FIG. 1. Interactions between the fetus, placenta, and mother during human pregnancy. Maternal constraint limits fetal growth, whereas the
maternal pregnancy state promotes placental growth, which in turn promotes fetal growth. The fetus and mother communicate via the placenta.
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100-g increase in mean birth weight due to maternal nutri-
tional supplementation (362). In Gambia, mean birth weight
was significantly increased by 136 g and mean head circum-
ference was increased by 3.1 mm after the use of maternal
dietary supplements, which were associated with a signifi-
cant overall reduction in stillbirths and perinatal mortality
(10). The risk of postnatal death in term infants weighing
2000–2499 g has been estimated to be increased 2-fold com-
pared with infants weighing 2500–2999 g and increased
4-fold compared with infants weighing 3000–3499 g (363).
Maximizing fetal growth will reduce a significant burden on
the health care system from both neonatal mortality and
morbidity.

Fetal growth restriction may be classified as symmetrical
(Type I) or asymmetrical (Type II). In symmetrical growth
restriction, the entire body is proportionally small (2). This
accounts for 25% of IUGR cases and often results from an
alteration in growth in early gestation, during the period of
cellular hyperplasia, and may be the result of genetic anom-
alies, severe malnutrition, or maternal smoking (1). Subop-
timal first-trimester growth, represented by a small crown-
rump length measurement, is a good predictor of birth
weight less than 2500 g at term, or birth weight below the fifth
percentile (364). In 1963, Gruenwald (365) first observed that
growth-restricted infants had higher brain weight (brain
sparing) and lower thymus weight than premature infants of
the same size. This type of growth restriction is defined as
asymmetric growth restriction and may occur during the
periods of cellular hypertrophy later in gestation. It is often
the result of uteroplacental insufficiency secondary to other
maternal complications (1). The ponderal index, [birth
weight (g)/birth length (cm)3] � 100, which is unaffected by
race or infant sex, is a measure of fetal growth used to assess
the thinness or obesity of the neonate. Infants with symmet-
rical growth restriction have a normal ponderal index,
whereas those with asymmetric growth restriction have a
reduced ponderal index due to a normal length but low
weight (1). Ponderal index has been a useful measure in
studies linking changes in fetal growth with disease in
adulthood.

B. Fetal origins of adult disease

Events in utero may determine long-term health outcomes
into adulthood. This concept is known as fetal programming
or the developmental (fetal) origins of adult disease. Small
size at birth is a strong predictor for the development of
diseases in adult life, including diabetes (366), cardiovascular
disease (367), atherosclerosis (368), hypertension (369), and
stroke (370). However, not all studies have supported this
hypothesis. Recently, Huxley et al. (371) conducted an anal-
ysis of more than 100 studies that had previously reported on
the relationship between birth weight and systolic blood
pressure in later life. They found that the size of the effect of
birth weight on subsequent blood pressure diminished with
increasing sample size, such that smaller studies were more
likely to report an inverse relationship, whereas larger stud-
ies, which were less likely to be subject to publication bias,
reported much smaller associations. Similarly, the associa-
tion between birth weight and cholesterol levels in later life

was found to be heavily influenced by studies of small sam-
ple size, and adjustment for current weight may also have
exaggerated the association due to the independent relation-
ships between birth weight and current weight, and current
weight and cholesterol levels (372).

Despite this negative data, there are studies from many
populations that support the concept of the fetal origins of
adult disease. Several theories have been proposed that ac-
count for the fetal response to the expected environment after
birth. Adaptation of the fetus to the maternal environment in
utero is believed to lead to changes in body structure, phys-
iology, and metabolism that persist into extrauterine life. The
adaptation may be suitable for the intrauterine environment
but inappropriate for extrauterine conditions. The thrifty
phenotype hypothesis was proposed to explain the relation-
ship between fetal growth and the development of type 2
diabetes. Hales and Barker (373, 374) proposed that poor
nutrition in early life (either fetal or infant) leads to alter-
ations in the development of key organ systems such as the
pancreas, resulting in insulin resistance, while sparing other
organs such as the brain. When individuals experience a
change in their environment postnatally, these adaptations
are no longer appropriate and, as a result, lead to disease. The
presence of additional factors, such as obesity, can further
increase the risk of disease (373, 374).

More recently, Hanson and Gluckman (375) have ex-
tended this model into the theory of the predictive adaptive
response. In this model, maternal constraint is used as a
strategy to ensure that the fetus is always able to survive in
the case of reduced nutrition in the postnatal environment.
However, the risk of disease in later life increases when there
is a mismatch between the prenatal and postnatal environ-
ment, either because of increased fetal demand relative to
maternal supply, reduced or increased maternal supply rel-
ative to fetal demand, or a change in the postnatal environ-
ment (375).

David Barker has been at the forefront of the epidemio-
logical research into the fetal origins of adult disease. Studies
by Barker and Osmond (376, 377) examined the geographical
relationship between current death rates from heart disease
or stroke and prior infant or maternal mortality rates in
England and Wales. The rate of ischemic heart disease in
1968–1978 was closely correlated with neonatal and post-
neonatal mortality in 1921–1925 (376). Furthermore, the geo-
graphical distribution of death rates from stroke was more
closely correlated with past maternal mortality than with
other variables, suggesting that the health of mothers may be
linked to the risk of disease in their offspring (377). Similar
data have been reported recently with studies proposing that
prenatal factors contribute to the geographical distribution of
stroke mortality in both the United States and England and
Wales, which cannot be fully explained by adult lifestyle
(370).

1. Effects on blood pressure. Studies of almost 10,000 children
at age 10, born in 1970 and more than 3,000 adults at 36 yr
of age, born in 1946, were conducted by Barker et al. (378).
There was an inverse relationship between birth weight and
systolic blood pressure, independent of current weight,
which was stronger in the adults. Increased systolic blood
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pressure in children was unrelated to gestational age and
prematurity and only associated with reduced fetal growth
(378). A study from another group found a similar relation-
ship between systolic blood pressure in children aged 5–8 yr
and birth weight, but only when standardized for current
weight (379).

Further studies from Barker et al. (380) examined more
than 5000 men born in Hertfordshire between 1911 and 1930
and found that mortality from ischemic heart disease was
more common in men with low weights at birth and 1 yr of
age. A similar trend was noted for death from chronic ob-
structive lung disease, but not death from lung cancer (380).
The relationship between higher systolic blood pressure and
low birth weight has been found to be consistent in children
aged 0–10 yr, and in adults at 36 yr, 46–54 yr, and 59–71 yr,
but the relationship becomes more pronounced with age
(381).

Placental size is an important determinant of fetal size and,
not surprisingly, associations between placental size and the
fetal to placental weight ratio and blood pressure in adult life
have also been described (382). Systolic and diastolic blood
pressures at age 50 were strongly related to both placental
weight and birth weight independent of gestational age,
current alcohol consumption, and current body mass index,
in a cohort of 449 men and women born in Lancashire be-
tween 1935 and 1946 (382). The highest blood pressures were
found in those with a low birth weight and high placental
weight (382). Similar relationships were observed within
each social class (382). An inverse correlation between pla-
cental weight and the length to head circumference ratio
suggested the possibility that changes in the fetal circulation,
such as diversion of blood flow to the brain at the expense
of other parts of the body, may lead to permanent alterations
in blood vessel development and particularly arterial struc-
ture (366, 382).

Maternal diet during pregnancy may influence fetal
growth with consequences for adult blood pressure. A par-
ticularly high or low protein diet during pregnancy has ad-
verse effects on blood pressure in offspring (383). During the
Dutch famine, neonates exposed during mid or late gestation
had reduced birth weights compared with neonates born
before the famine or conceived after the famine (15, 384).
Exposure to the famine in late gestation has been associated
with impaired glucose tolerance and type 2 diabetes in the
offspring at 50 yr of age (15). Offspring exposed during early
gestation had an increased prevalence of coronary heart dis-
ease, respiratory disease, hypertension, diabetes, and cancer
at 50 yr of age (384).

2. Effects on the development of Syndrome X. Small size at birth
has been linked to Syndrome X, or the combination of non-
insulin-dependent diabetes mellitus, hypertension, and hy-
perlipidemia (366). In Hertfordshire, 64-yr-old men with
Syndrome X had lower weights at birth and 1 yr of age,
whereas higher birth weights were associated with lower 2-h
plasma glucose and insulin concentrations and lower blood
pressures (385). In Lancashire, men and women at age 50
with Syndrome X had lower birth weights as well as a small
head circumference and low ponderal index at birth. The
association between fetal growth and diabetes may be due to

alterations in fetal pancreatic development and a reduction
in insulin-secreting capacity (366).

Other studies have found higher plasma glucose in chil-
dren who were thin at birth with a low ponderal index (386)
and in adults of reduced birth weight (387). Alterations in
�-cell development and function during undernutrition in
fetal life may result in permanent changes such as a reduced
capacity for insulin production, which becomes a disadvan-
tage when nutrition is abundant (385). Alternatively, a ge-
netic predisposition to low insulin production may result in
both reduced fetal growth and glucose intolerance later in life
(385).

The effects of small size at birth on adult diseases is com-
pounded by rapid rates of childhood growth (388). Barker et
al. (388) found that adults from Helsinki who had been born
small and had the largest body mass index in childhood were
at greatest risk for type 2 diabetes, hypertension, and death
or hospitalization due to coronary heart disease. It is thought
that developmental plasticity allows an appropriate pheno-
type for the current environment in utero; however, when
nutrition improves after birth, compensatory growth occurs.
The combination of these events results in physical and phys-
iological changes that contribute to the increased risk of
developing metabolic and cardiovascular diseases later in
life (388). Evidence for a mechanism connecting small size at
birth to obesity later in life comes from a study of “thin-fat”
Indian babies, in which low birth weight was associated with
low ponderal index (thinness) and reduced abdominal and
midarm circumference, but marked sparing of subscapular
skin fold thickness, a representative depot of central fat (389).
Neonates in India and the United Kingdom with birth
weights less than the 10th percentile exhibited both brain-
sparing and fat-sparing characteristics, possibly putting
them at risk of insulin resistance and cardiovascular disease
in adulthood (389).

3. Effects on respiratory disease. Reduced fetal growth may have
an effect on the development of respiratory diseases in chil-
dren and adults. However, the available data are contradic-
tory, with some studies showing an increased risk of devel-
oping asthma or having reduced lung function in smaller
neonates (390, 391) and others showing an increased risk of
asthma or atopy in larger neonates (392, 393). A study from
Barker et al. (394) demonstrated that lower birth weight was
associated with reduced adult forced expiratory volume at 1
sec (FEV1) at 59–70 yr of age, and death from chronic ob-
structive airways disease was also related to lower birth
weight. In an Indian study, adult lung function (FEV1), was
reduced with decreasing birth weight in men and women,
whereas a small head circumference at birth was associated
with reduced FEV1 to forced vital capacity ratio in men but
not women (395). These changes in adult lung function may
be related to permanent effects of maternal undernutrition on
lung development and structure, and differences between
men and women may relate to sex-specific differences in
lung growth in utero (394, 395). Lopuhaa et al. (396) found that
men and women who had been exposed to famine in midg-
estation had a higher rate of obstructive airways disease,
suggesting that fetal nutrition affects lung development, al-
though they found no evidence of changes in serum IgE or
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lung function in adulthood. Potential mechanisms linking
low birth weight to poor lung function later in life have been
studied in the sheep model of IUGR induced by chronic
placental insufficiency or maternal anemia (397). In these
studies, fetal growth restriction resulted in alterations of lung
structure and function, including a thickened air-blood bar-
rier, enhanced surfactant gene expression (397), and a re-
duction in total lung capacity (398).

4. Other effects on disease and behavior in later life. Numerous
other adult consequences of small size at birth have been
described in humans, including an increased risk of renal
failure (399), depression in men but not women (400), ath-
erosclerosis (401), and the development of preeclampsia
while pregnant (402). Women of low birth weight were found
to be 2.3 times more likely to develop preeclampsia than
those who weighed 2500–2999 g at birth, with the risk further
decreasing with increasing birth size (402). However, there
was also an important effect when adult weight was con-
sidered, with lean women of low birth weight having no
increased risk and overweight women of low birth weight
having a 16-fold increase in risk for preeclampsia (402). Re-
duced birth weight in combination with high adult weight
may produce the greatest risk for disease in adult life.

Low birth weight has also been linked to behavioral prob-
lems at school such as lack of motivation, aggression, and
concentration difficulty at age 10 (403) and low IQ at 6 yr of
age in children with no neurological impairment (404).
Breslau et al. (404) examined outcomes for children across a
range of birth weights, in an inner city area and suburban
area of Michigan. In both populations, low birth weight was
associated with an average IQ score five points lower than
normal birth weight children, resulting in 10% of low birth
weight children having an IQ more than 1 sd below the mean.
In addition, a gradient effect was observed, with the largest
reduction in the very low birth weight group who were less
than 1500 g (403).

Developmental plasticity allows the fetus to develop along
a growth trajectory that is appropriate for its intrauterine
environment. However, in the case where the environment
postnatally is different from that in utero, physiological ad-
aptations made by the fetus may be inappropriate. The in-
fluence of fetal growth on susceptibility to disease in child-
hood and adulthood may be related to this mismatch. An
understanding of the mechanisms that cause low birth
weight is important for the development of future interven-
tions, which may give small infants a better chance of a
healthy life, both in their immediate future and in the long
term.

5. Glucocorticoids and fetal programming. Studies in humans
and animals have related low birth weight and prenatal
stress to altered HPA axis activity in later life (405). Glu-
cocorticoids are released into the circulation after maternal
exposure to stressors, which may include physical illness
(406), death of or separation from a partner (407), or a na-
tional event such as war (408). Low birth weight has been
associated with elevated cortisol levels at birth (409) and
elevated plasma cortisol concentrations or HPA activity in
adult life in several populations (410, 411). Another group

has found that the effect of birth weight on adult plasma
cortisol is dependent on gestational age at birth (412, 413). In
those born before 39 wk gestation, lower birth weight was
associated with higher total and free plasma cortisol,
whereas in those born after 40 wk gestation, lower birth
weight was associated with lower plasma cortisol (412). In
children, increased urinary excretion of glucocorticoids was
found in those who had the lowest or highest birth weights
(414). Maternal first-trimester exposure to the stress of war
has been associated with an increased risk of the offspring
developing schizophrenia in adult life (408). In this epide-
miological study, women were pregnant during the time of
the German invasion of The Netherlands, which lasted 5 d
and resulted in the death of 2200 men (408). The level of
exposure to the stress would have varied widely between
individuals, possibly accounting for the small increased risk
of schizophrenia in the offspring (408). Lou et al. (406) found
that maternal stress, ascertained by questionnaire as an ex-
perience of moderate-severe stressful life events (such as
marital separation, job loss, death of spouse, or diagnosis of
severe physical illness) during midgestation affected birth
weight and was associated with small head circumference,
suggesting a specific effect on the brain, thus linking prenatal
stress, reduced growth, and altered brain development. Ap-
proximately 10% of maternal cortisol does cross to the fetus,
and increases in maternal cortisol levels may therefore con-
tribute to increased fetal cortisol levels during pregnancy
(263). Therefore, despite the presence of the placental 11�-
HSD2 enzyme barrier, an increase in maternal glucocorti-
coids as a result of stress could contribute to a significant
change in fetal glucocorticoid exposure (263), which would
be compounded by reduced placental 11�-HSD2 activity.
Murphy et al. (55) found that cord blood estriol, a derivative
of fetal adrenal dehydroepiandrostenedione, was signifi-
cantly reduced in the cord blood of females of asthmatic
mothers, in conjunction with reduced 11�-HSD2 activity and
birth weight, suggesting that changes in placental function in
response to asthma may lead to altered HPA development in
the neonate.

Although exposure of animals to prenatal glucocorticoids
has been associated with changes in blood pressure later in
life, investigations of the long-term effects of antenatal glu-
cocorticoid exposure on human neonates generally indicate
no adverse effects of this treatment on subsequent blood
pressure. A recent follow-up study of a cohort of subjects
who participated in a randomized controlled trial of beta-
methasone treatment during preterm labor found that there
was no significant effect of antenatal betamethasone expo-
sure on systolic or diastolic blood pressure at 6 yr of age (241)
or at 30 yr of age (243). However, in the 30-yr follow-up, it
was found that subjects exposed to betamethasone in utero
had some alterations in insulin resistance, consisting of
higher plasma insulin concentrations at 30 min and lower
glucose concentrations at 120 min after an oral glucose tol-
erance test (243). Previous studies examining blood pressure
had been contradictory, with one demonstrating increased
blood pressure at age 14 in those exposed to glucocorticoids
(415) and another demonstrating decreased blood pressure
at age 20 among those exposed to prenatal glucocorticoids
(242). Further research is needed in human subjects to de-
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termine the effects of antenatal glucocorticoids on long-term
health.

C. Clinical interventions to improve fetal growth

There has been very little change in the rate of low birth
weight and IUGR during human pregnancy, despite de-
creased infant mortality in recent years (359). More inter-
ventional studies are needed to improve fetal growth out-
comes. There have been several randomized controlled trials
of comprehensive prenatal care programs that aim to reduce
specific risk factors to reduce the rate of low birth weight
(416). Few of these trials have been successful, possibly be-
cause they have targeted whole populations of women who
come from socioeconomically disadvantaged areas, thus in-
cluding a large proportion of individuals who do not have
a need for the intervention (416). It may be more appropriate
to trial these strategies among specific subpopulations of
women to reduce the impact of particular known and mod-
ifiable risk factors, such as smoking, undernutrition, preg-
nancy-related anxiety, and infection, on low birth weight
(416).

Although trials that result in improved fetal growth are
lacking, there has been some success with nutritional sup-
plementation in undernourished women and in smoking
cessation programs in developed countries (417). Prevention
of infection, particularly with malaria and HIV, as well as
improvements in maternal nutrition, are likely to be impor-
tant strategies for women in developing countries (417). Un-
derstanding the endocrine interactions that influence human
fetal growth and development will help address the clinical
problem of low birth weight.

IV. Conclusions

Together the mother, placenta, and fetus interact during
pregnancy to modulate fetal growth. Maternal nutrients are
essential for growth and development of the fetus, and trans-
port of these nutrients occurs via the placental blood supply.
The placenta is also important in the production and trans-
port of growth-promoting hormones. A barrier function for
the placenta, through the activity of 11�-HSD2, is of impor-
tance in preventing the high concentrations of glucocorti-
coids found in the mother from reaching the fetus in an active
form. The effects of glucocorticoids may be fetal sex specific,
with implications for fetal programming. Disturbances in
fetal growth regulation can result in adverse outcomes for the
neonate, and these adverse outcomes may persist into adult
life. It is therefore important to understand the mechanisms
regulating human fetal growth, and particularly the role of
mother, placenta, and fetus in complicated pregnancies. As
a result, a better outcome for the fetus may be achieved,
which may have long-term health benefits into adulthood.
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