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Abstract
Circulating signalling proteins have often been divided into

hormones and cytokines, but it is increasingly being

recognised that these substances have a number of common

characteristics and mechanisms of action. This is clearly

illustrated by the suppressor of cytokine signalling (SOCS)

proteins which are increasingly seen as a central component of

the regulation of the action of hormones and cytokines that

signal through the cytokine receptor complex. The SOCS

protein family is probably more extensive than currently
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recognised; its members may have differential tissue

expression and their potency for suppressing cytokine

signalling may vary. Recent knockout and transgenic studies

in mice have highlighted the role that these proteins play in

growth and skeletal development as well as in inflammation.

Chronic inflammation is associated with altered growth and

skeletal development, and it is possible that SOCS proteins

may have an important role to play in mediating these effects.
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Introduction

Linear growth and skeletal development are tightly regulated

processses that are highly dependent on GH signalling and

action. Clinical studies have shown that growth and skeletal

development are impaired during periods of uncontrolled

chronic inflammation which is often associated with altered

systemic and local cytokine milieu. The mechanisms by

which these inflammatory cytokines modulate linear growth

and skeletal development are poorly understood, but an

involvement of members of the suppressor of cytokine

signalling (SOCS) family has been proposed. This review

will first describe SOCS proteins and the effects of the

GH/insulin-like growth factor 1 (IGF1) axis on linear growth

and skeletal development before describing the evidence that

highlights the role of SOCS proteins in controlling this axis as

well as in skeletal development.
Cytokine signalling

Cellular responses to cytokine stimulation depend on the type

of cytokine and the nature of the target cell, and include

immune function, inflammation, and cell proliferation and

differentiation. The interaction between a cytokine and its
receptor induces receptor dimerisation or oligomerisation,

which results in the juxtaposition of a group of proteins that are

members of the Janus kinase (JAK) family of protein tyrosine

kinases – JAK1, JAK2, JAK3 and TYK2 ( Ihle & Kerr 1995).

These can cross-phosphorylate, causing enzymatic activation

of the cytokine receptor.GH, prolactin and leptin are just some

of the ligands that signal through these same receptors and

along with other cytokines have their own specific preferential

JAKs. A key target of JAK activity is the cytoplasmic domain of

the cytokine receptor, which becomes tyrosine phosphory-

lated at multiple residues, creating docking sites for signalling

proteins containing Src homology 2 (SH2) or phosphoty-

rosine-binding domains. It is likely that some downstream

signalling pathways are common to all cytokine receptors and

some are specific for individual cytokine receptors (Leaman

et al. 1996). The association between signalling proteins and

cytokine receptors serves to initiate multiple signalling

pathways, such as those regulated by Ras sarcoma proteins

(RAS), phosphatidylinositol 3-kinase (PI3K) and the signal

transducers and activators of transcription (STATs). Together,

these pathways culminate in the regulation of gene expression

in the nucleus, resulting in an appropriate cellular response to

the cytokine. The STAT family, consisting of at least seven

transcription factors, plays a critical role in regulating

physiological responses to cytokine stimulation. Members of
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the STAT family bind tyrosine-phosphorylated cytokine

receptors through their SH2 domains. Once bound to the

receptor, STATs are phosphorylated by JAKs, followingwhich

they dissociate from the receptor and form homo- or

heterodimers. STAT dimers then translocate to the nucleus,

where they interact with specific DNA elements in the

promoters of cytokine-responsive target genes and thus

regulate transcription (Darnell 1997). The transcriptional

activityof STATsmay depend on a number of factors including

its interactionwith other proteins within the cell. For instance,

STAT5 transcriptional activity is increased by formation of a

complex with the glucocorticoid or mineralocorticoid

receptor, while it is reduced by formation of a complex with

the oestrogen receptor (Stoecklin et al. 1999).
Figure 1 Diagram representing the structure of SOCS proteins. Eight
proteins that belong to the SOCS family of proteins are shown in the
upper panel. They are characterised by the presence of an Src
homology 2 (SH2) central domain and the SOCS box domain at the
C-terminus. A small domain called kinase inhibitory region (KIR),
only found in SOCS1 and SOCS3, is shown as a small box at the
N-terminal region. SOCS proteins can interact with phosphorylated
tyrosines through their SH2 domain and with Elongin BC
through their SOCS box domain. Some other proteins containing
a SOCS box domain but lacking a SH2 domain are shown in the
lower panel.
SOCS proteins

Suppression of signalling through the activated cytokine

receptor can occur by receptor degradation through the

ubiquitin/proteosome pathway or by dephosphorylation of

tyrosines within JAK or the receptor. The SOCS proteins are

an important group of proteins that are generated in response

to cytokines and can also bind through their SH2 domains to

phosphorylated tyrosines within the cytokine receptor–JAK

complex, and inhibit further cytokine receptor activation

(Hilton 1999). These proteins may also promote proteosomal

degradation of the JAKs (Zhang et al. 1999). The SOCS

family contains at least eight members: SOCS1–7 and the

cytokine inducible SH2-containing protein (CIS). Although

SOCS1, 2, 3 and CIS are well characterised, little is known

about the function and mechanisms of action of SOCS4–7.

Structurally, SOCS proteins possess a poorly conserved

amino-terminal domain of variable length, a central SH2

domain, as well as a highly conserved amino acid C-terminal

domain, named the SOCS box (Fig. 1). Although the basal

levels of SOCS proteins are generally low, their expression

levels have been shown to be markedly induced by numerous

cytokines, growth factors and hormones, such as interleukin 1

(IL1), IL2, IL3, IL4, IL6, IL9, IL10, IL11, interferona (IFN-a),
IFN-g, insulin, ciliary neurotrophic factor, granulocyte

colony-stimulating factor, leukaemia inhibitory factor, GH,

angiotensin II, cardiotrophin, oestrogen, prolactin and

thyrotrophin. The transcriptional regulation of SOCS

proteins appears to be mediated, at least in part, by the

STAT signalling pathway. Indeed, the promoter region of

SOCS genes, such as the murine Socs3, may have specific

sequences for STAT binding (Auernhammer et al. 1999) or

for other hormones such as oestrogen (Leong et al. 2004).

Accordingly, cells transfected with a dominant negative

mutant of STAT3 failed to induce SOCS expression

following IL6 stimulation. Furthermore, SOCS proteins,

particularly, murine SOCS2, 6 and 7, may be able to regulate

the degradation of other members of their family (Piessevaux

et al. 2006). Finally, the SOCS family of proteins may be larger

than the eight that have been hitherto described. There are up
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to 20 proteins with similar SOCS motifs, and there are also

other proteins such as caveolin 1, which can also suppress

cytokine signalling by inhibiting the kinase activity of JAK

family members ( Jasmin et al. 2006).
The GH/IGF1 axis

GH and IGF1 are important regulators of longitudinal

growth. GH is a single-chain peptide of 191 amino acids.

The synthesis and release of GH from the anterior pituitary

gland are promoted by GHRH, and inhibited by somatostatin

but regulated by a range of central and peripheral signals

(Goldenberg & Barkan 2007). IGF1, which is secreted by the

liver under GH control, inhibits GH secretion directly in

somatotrophs and indirectly by stimulating the release of

somatostatin (Goldenberg & Barkan 2007). GH circulates

bind to a GH-binding protein, which is the extracellular

domain of the GH receptor (GHR; Bougnères & Goffin

2007). The function of the GH-binding protein is

incompletely understood, although it may modulate the

activity of GH either by prolonging its half-life or by reducing

its availability to the GHR.

In the human, the GHR is highly expressed in the liver,

adipose tissue, heart, kidneys, intestine, lung, pancreas,

cartilage and skeletal muscle where it induces the synthesis

of IGF1 (Ballesteros et al. 2000). However, systemic IGF1

which is synthesised primarily in the liver circulates as part of

a 150-kDa complex formed by one molecule each of IGF1,

IGF-binding protein (IGFBP)-3, the predominant circulat-

ing-binding protein, or IGFBP-5, and the acid labile subunit
www.endocrinology-journals.org
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(ALS). There are six IGFBPs, and IGFBP-1, -2, -4 and -6 also

can bind IGF1 in the circulation and peripheral tissues but do

not form part of the ternary complex (Holly & Perks

2006). IGFBPs are in concentrations in excess of IGF1.

Consequently, IGF1 circulates mostly bind to the complex,

and !1% of total serum IGF1 circulates as a free hormone.

The 150-kDa ternary complex stabilises IGF1, prolonging its

circulating half-life and regulating its availability to target

tissues. Consequently, the ternary complex plays an important

role in determining the endocrine function of IGF1.

Although, in excess, IGFBPs inhibit IGF1 action, the triple

inactivation of IGFBP-3, -4 and -5 demonstrated that

IGFBPs are necessary to maintain appropriate levels of

systemic IGF1 and adequate postnatal growth (Ning et al.

2006). ALS is synthesised in the liver under the control of GH

and circulates in excess over the other components of the

complex, so that it plays a critical role in the storage and

release of IGF1. IGF2 shares biochemical and biological

properties with IGF1; it is important in skeletal development,

but its function in the adult skeleton is not proven. IGF2 is

synthesised by skeletal cells, but its synthesis is not GH

dependent. The IGF2/mannose-6-phosphate receptor does

not play a major role in IGF signal transduction and is

responsible for clearing IGF2, regulating its levels, during

foetal development (Blackburn et al. 1997).
The GH/IGF1 axis and bone

Bone is a dynamic connective tissue that undergoes a

continuous process of resorption and renewal. The principal

cells that mediate this process include the osteoprogenitor

cells that contribute to maintaining the osteoblast population,

the osteoblasts that sythesise the bone matrix, the osteocytes

that influence bone structure and response to mechanical load

and the osteoclasts that promote bone resorption.

Osteoblast maturation and function requires a spectrum of

signalling proteins including morphogens, hormones, growth

factors, cytokines, matrix proteins and transcription factors

that act in a temporal-specific manner (Aubin et al. 2006).

Through the PI3K pathway, IGF1 may reduce osteoblast

apoptosis and promote osteoblastogenesis by stabilising

b-catenin, enhancing Wnt-dependent activity (Playford

et al. 2000, Krishnan et al. 2006). This effect, associated

with modest mitogenic properties, causes an increase in the

number of osteoblasts, and an increase in osteoblastic function

and bone formation (Canalis 1980). The effect of IGF1 on

bone resorption is less clear than on bone formation. IGF1

induces RANK-L synthesis (and as a consequence osteoclas-

togenesis) and enhances osteoclast function (Mochizuki et al.

1992). IGF1 induces vascular endothelial growth factor

(VEGF) expression in skeletal cells, and VEGF may serve to

couple angiogenesis with endochondral bone formation and

with osteoblastic differentiation and function (Akeno et al.

2002). Transgenic mice expressing IGF1 under the control of

the osteoblast-specific osteocalcin promoter exhibit increases
www.endocrinology-journals.org
in trabecular bone secondary to an increase in bone formation

(Zhao et al. 2000). Igf1 null mutants exhibit reduced cortical

bone but not trabecular bone, possibly due to a compensatory

increase in GH secretion or due to a decrease in trabecular

bone resorption (Liu et al. 1993). Mice carrying mutations of

the GHRH receptor (lit/lit mouse) or the GHR have no GH

secretion or action, and consequently low levels of systemic

IGF1 (Beamer & Eicher 1976, Sims et al. 2000). These

mutants display osteopenia and reduced cortical bone, but

display normal trabecular bone. The contribution of systemic

IGF1 to cortical bone integrity is confirmed in mice carrying

a liver-specific igf1 deletion singly or in combination with an

als deletion. These mice, which display reductions in serum

IGF1, have decreased cortical bone (Yakar et al. 2009). These

observations confirm the contribution of systemic IGF1 to

cortical bone integrity and to a lesser extent to trabecular

bone integrity. In contrast, the locally produced skeletal IGF1

plays a more significant role in trabecular bone integrity. This

is demonstrated in transgenic mice expressing IGF1 in

osteoblasts and in conditional igf1 receptor null mice, which

display decreased osteoblast number and function, causing

reduced bone formation and reduced trabecular bone volume

(Zhao et al. 2000, Zhang et al. 2002). Therefore, systemic

IGF1 maintains cortical bone structure, whereas skeletal IGF1

serves to maintain trabecular bone structure. The function of

IGF1 in skeletal homeostasis is confirmed in irs1 or irs2 null

mutants, which also exhibit osteopenia (Gazzerro & Canalis

2006). At a local level, although GH is not a major inducer of

IGF1 in osteoblasts, parathyroid hormone (PTH) and other

inducers of cAMP increase IGF1 expression in osteoblasts,

and IGF1 may, therefore, mediate some of the actions of PTH

in bone in vitro and in vivo (Canalis et al. 1989). On the other

hand, glucocorticoids decrease IGF1 transcription in osteo-

blasts, and their inhibitory effects on the function of the

mature osteoblast may be partly explained by reduced IGF1

levels in the bone microenvironment (Delany et al. 2001).

For osteoclastogenesis, two cytokines, RANKL and MCSF

play a very important role. The discovery of RANKL, a

member of the tumor necrosis factor (TNF) superfamily, was

preceded by the identification of its naturally occurring

inhibitor, osteoprotegerin (OPG) which is produced by

osteoblasts. Optimal osteoclast function depends on the

creation of a suitable microenvironment that facilitates bone

resorption, and this requires an acidic milieu, the presence of a

lysosomal enzyme cathepsin K and the presence of integrins

that facilitate the physical intimacy between the osteoclast and

the bone matrix. In osteoclastogenesis, growth factors, such as

transforming growth factor b (TGF-b), which is the most

abundant cytokine in the bone matrix, play an important role

in maintaining and enhancing the responsiveness of osteoclast

precursors to RANKL (Fuller et al. 2000). Osteoclasts are

reported to express GH and IGF1 receptors in the mammal

(Zhang et al. 1992, Fiorelli et al. 1996, Hou et al. 1997), and

in vivo or in vitro exposure to recombinant GH is associated

with an increase in markers of bone resorption (Kassem et al.

1994) and increased osteoclast activity (Guicheux et al. 1998).
Journal of Endocrinology (2010) 206, 249–259
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GH and IGFBP-5 exposure can increase osteoclast activation

and can stimulate osteoclastogenesis; it is possible that the

former effect may be dependent on the presence of osteoblasts,

but promotion of osteoclast differentiation from haemato-

poietic blast cells seems to be an osteoblast-independent effect

(Nishiyama et al. 1996, Kanatani et al. 2000). Furthermore, the

GH induced-osteoclast differentiation seems to be indepen-

dent of IGF1, whereas the activation of osteoclast is dependent

on IGF1 (Kanatani et al. 2000). Thus, unlike bone formation,

where the stimulatory effects of GH seem to be via IGF1, GH

seems to have a more profound independent stimulatory effect

on bone resorption. Pro-inflammatory cytokines such as

TNF-a, IL1b and IL6 can promote osteoclastogenesis, and

GH and IGF1 can stimulate production of these cytokines in

osteoblasts (Slootweg et al. 1992, Swolin &Ohlsson 1996) and

in T-cells (Renier et al. 1996, Uronen-hansson et al. 2003).

In vivo and in vitro studies suggest that GH and IGF1 may also

influence osteoclast activity by altering the RANKL/OPG

balance, but there is a lack of clarity about the direction and

magnitude of this effect (Ueland 2005).
The GH/IGF1 axis and the growth plate

The original somatomedin hypothesis proposes that GH

stimulates growth at the epiphysis by systemically derived liver

IGF1 (Salmon&Daughday 1957, Daughaday et al. 1972). The

somatomedin hypothesis has been questioned as direct effects

of GH on chondrocytes in vivo and in vitro have been reported

(Isaksson et al. 1982, Madsen et al. 1983, Isgaard et al. 1986,

Schlechter et al. 1986). Although such direct effects have not

been observed by others (Burch et al. 1985, Makower et al.

1989), an alternative dual effector theory of GH action has

been proposed (Green et al. 1985). This involves GH acting on

germinal zone precursors of the growth plate to stimulate the

differentiation of chondrocytes and then amplify local IGF1

synthesis, which, in turn, induces the clonal expansion of

chondrocyte columns and hypertrophy in an autocrine/

paracrine manner (Isaksson et al. 1982, Green et al. 1985,

Zezulak & Green 1986). While concentration of the GHR

within the germinal chondrocytes of the growth plate is

consistent with the dual effector theory (Barnard et al. 1988),

recent in situ hybridisation studies and immunohistochemical

investigations using more specific GHR antibodies have

indicated a broader distribution of the GHR within the

growth plate suggesting additional roles for GH such as

the regulation of chondrocyte proliferation, differentiation

and hypertrophy (Lupu et al. 2001, Gevers et al. 2002).

Interestingly, this study by Gevers et al. also indicated that the

chondrocytes of the growth plate expressed GH-binding

protein where it may prolong the half-life of GH in vivo or

alternatively it may competewith the GHR for binding toGH

and protect chondrocytes from continuous GH exposure.

In addition to GH, IGF1 has also been shown to stimulate the

proliferation of germinal zone chondrocytes, and therefore a

role for systemic or local IGF1 in initiating chondrocyte events
Journal of Endocrinology (2010) 206, 249–259
in the germinal zone of the growth plate cannot be excluded

(Hunziker et al. 1994, Reinecke et al. 2000).

Further studies using conditional liver Igf1 knockout mice

have also challenged the classical somatomedin hypothesis

(Sjögren et al. 1999, Yakar et al. 1999). Both the studies reported

a significant reduction in circulating IGF1 but not in body-

weights of the transgenic mice suggesting that while liver-

derived IGF1 is themain determinant of circulating IGF1 levels,

it is not as important for postnatal growth as locally derived

IGF1. These observations have, however, been questioned by

others (Lupu et al. 2001, Stratikopoulos et al. 2008) who have

suggested that the endocrine ablation of liver IGF1 only

occurred after the critical postweaning growth spurt. Also liver

IGF1 production was achieved in mice lacking Igf1 gene

expression in all other tissues demonstrating that under these

conditions, endocrine IGF1 plays a very significant role in

mouse growth as its action contributes 30% of adult body size

and sustains postnatal development (Stratikopoulos et al. 2008).

The relative contributions of GH and IGF1 to pre- and

postnatal bone growth have been examined through growth

analysis of various transgenicmouse lines. GH deficiency results

in impaired growth, and the growth of ghr null mice is retarded

fromw2 weeks after birth (Lupu et al. 2001). In contrast, IGF1

deficiency retards both pre- and postnatal growth, and igf1r null

mice, while exhibiting a more severe growth deficiency, die

shortly after birth (Baker et al. 1993, Liu et al. 1993, Lupu et al.

2001). In this context, prenatally, IGF1 signalling is considered

to be GH independent, whereas postnatally, IGF1 is partly or

fully GH dependent with phosphorylation of STAT5b having

an intermediary role (Herrington et al. 2000,Woelfle et al. 2003,

Klammt et al. 2008). Under specific conditions, both GH and

IGF1 can promote skeletal growth. Mice overexpressing GH

have increased growth, but this is only observed at 3 weeks

postnatally, despite high circulating GH levels at birth. This

accelerated growth coincides with a delayed induction of IGF1

expression strongly suggesting that IGF1 is directly involved in

mediating the GH signal (Mathews et al. 1988a). Chronic

overexpression of IGF1 does not, however, accelerate skeletal

growth, whereas igf1 transgenic GH-deficient mice display

normal linear growth (Mathews et al. 1988b, Behringer et al.

1990). This latter observation (Behringer et al. 1990) suggests

that IGF1 canmediate GH function in regulating growth. Also,

mutant mice lacking IGF1 exhibit increased growth after IGF1

administration but are unresponsive to GH which may indicate

that GH itself makes a smaller contribution to growth (Won &

Powell-Braxton 1998, Lupu et al. 2001).However, if all growth-

promoting GH actions are mediated by IGF1, the expectation

would be that the phenotype of ghr and igf1 null mice would be

indistinguishable from double ghr/igf1r mutants. This has been

shown not to be the case. Both ghr and igf1 null mice show

reduced tibial growth that is more severe in double ghr/igf1r

mutants, and it is likely therefore that GH and IGF1 have both

independent and common functions (Lupu et al. 2001,Wu et al.

2009). The independent functions of GH and IGF1 on the

chondrocytes of the growth plate may, however, predominate.

In comparison with the control mice, the growth deficits of the
www.endocrinology-journals.org
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tibia in the double ghr/igf1r null mice are almost identical to the

sum of growth deficit observed in the single ghr and igf1mutant

tibia. The contributing overlapping function has been estimated

not to exceed 5% (Lupu et al. 2001). All contributions

considering the growth-promoting role of GH arewell accepted,

but the relative contributions to the growth of the direct or

indirect effects of GH have still to be precisely determined.

The actions of IGF1, whether produced locally or

systemically, are via the IGF1 receptor (IGF1R) expressed

on the cell surface of the chondrocytes of the growth plate.

The type-2 IGF1R is expressed equally throughout all

maturational zones of the growth plate, whereas the type-1

receptor is more highly expressed by proliferating chondro-

cytes (Trippel et al. 1986, Parker et al. 2007). These data are

consistent with the concept that IGF1 has regulatory actions

on all chondrocytes of the growth plate. The IGF1 signalling

pathway has a central function in modulating endochondral

bone growth and regulates a number of key chondrocyte

physiological processes such as chondrocyte proliferation,

matrix synthesis, differentiation, hypertrophy and survival

(Lupu et al. 2001, van der Eerden et al. 2003, Wang et al.

2004, Nilsson et al. 2005). Some dispute, however, exists

concerning the major physiological drivers on IGF1-

enhanced bone growth. Chondrocyte numbers and prolifer-

ation rates are reported to be normal (Wang et al. 1999) or

decreased (Lupu et al. 2001) in igf1 null mice, whereas the size

of the hypertrophic chondrocytes are smaller in the igf1

mutant mice (Wang et al. 1999). The direct effects of IGF1 on

bone growth have been investigated in cultured rodent

metatarsals maintained in culture. Under these highly

controlled conditions, IGF1 increased chondrocyte prolifer-

ation, hypertrophic cell size and linear growth (Scheven and

Hamilton 1991, Mushtaq et al. 2004). One important

outstanding question yet to be fully clarified is the cellular

source of the IGF1 (GH dependent or independent) that

controls linear bone growth. Contrasting data exist on the

presence (Nilsson et al. 1990, Reinecke et al. 2000) or absence

(Shinar et al. 1993, Wang et al. 1995) of IGF1 mRNA in the

chondrocytes of the growth plate which may result from

limitations of the methodologies employed. Recently, a

combination of growth plate microdissection and quantitative

PCR has revealed that IGF1mRNA levels are very low in rat

chondrocytes of the growth plate suggesting that the

biological importance of this source of IGF1 may be

negligible (Parker et al. 2007). Interestingly, these authors

suggest that the source of IGF1 interacting with its

chondrocyte receptor may be derived from the plasma or

surrounding perichondrium and/or bone (Parker et al. 2007).

receptor, whereas SOCS3 and SOCS2 bind to phosphorylated
tyrosines that might also be STAT5-binding sites, such that SOCS2
might block STAT5 binding and thus inhibit the phosphorylation,
dimerisation and transcriptional activation of STAT5. In addition,
the SOCS proteins may promote proteasomal degradation of their
targets. SOCS proteins, particularly, SOCS2 and SOCS3 have
different levels of potency, and the final biological effect may
depend on the relative concentration of the two proteins. The
strength of the red lines reflects the respective potency of the
inhibitory effect of SOCS1–3. Adapted from Pass et al. (2009).
The SOCS proteins and their effect on growth

It is well recognised that GH/IGF1 signalling is modulated by

CIS and SOCS1–3, but surprisingly, apart from studies

reporting the role of SOCS2 in bone growth, little information

exists on the effects of the other SOCS protein in regulating
www.endocrinology-journals.org
linear growth. Recent genome wide association studies have

identified SOCS2 as one of 20 loci that influence human adult

height (Weedon et al. 2008) This section of the review is

limited to relevant data on SOCS1–3. The effect of these

SOCS proteins on GH signalling is summarised in Fig. 2.
SOCS1

Analysis of socs1 null mice has shown that this protein is

indispensable for normal postnatal development. At birth,

socs1-deficient mice are indistinguishable from their normal

littermates, but within 10 days the socs1 null mice exhibit

stunted growth and die within the first 3 weeks of life. The

smaller body weight of socs1-deficient mice was associated

with an abnormal femoral marrow cell count, and cytological

analysis revealed a consistent deficit of lymphocytes in

this population (Starr et al. 1998). The observed growth

retardation is likely to be a pathological response to

uncontrolled IFN-g signalling observed in socs1 null mice as

treatment of socs1 null mice with neutralising anti-IFN-g
antibody resulted in a healthy phenotype and no growth

retardation at 3 weeks of age (Alexander et al. 1999). Almost

identical data were obtained in double socs1K/K/ifn-gK/K
Journal of Endocrinology (2010) 206, 249–259
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mice where the authors reported no pathology and normal

body growth at 3 weeks of age (Alexander et al. 1999). It is

unreportedwhether socs1nullmice have elevatedGH signalling,

but this would be expected as inhibition of GH signalling by

SOCS1 is complete (Adams et al. 1998, Hansen et al. 1999).

Although an increased growth phenotype as observed in the

socs2 null mice (see below) would be expected in the socs1 null

mice, this has not been reported in socs1K/K/ifn-gK/K mice

maintained for up to 6 months of age (Alexander et al. 1999).
SOCS2

The phenotype of socs2 null mice is notable due to its increase in

linear bone growth and body mass where there is a

proportionate augmentation of most visceral organs (Metcalf

et al. 2000, Macrae et al. 2009). SOCS2 deficiency results in a

40% increase in body weight of 6-week-old male mice and a

27% increase in the body weight of 7-week-old female mice

(MacRae et al. 2009). Body length in male and female socs2-

deficient mice is also greater as is the length of the long bones of

the fore and hind limbs (Metcalf et al. 2000, Lorentzon et al.

2005, Macrae et al. 2009). The increased longitudinal bone

growth observed in socs2 null mice (Metcalf et al. 2000,

Lorentzon et al. 2005, MacRae et al. 2009) is consistent with

increased signalling through the GH/IGF1 axis and indicates

that SOCS2 protein has a functional role in the chondrocytes of

the growth plate dynamics. Nevertheless, initial histological

analyses failed to record any obvious abnormalities of the

epiphyseal growth plate of the tibia and femur (Metcalf et al.

2000). A fuller histomorphometric analysis, however, revealed

that socs2 null mice had wider growth plates with significantly

wider proliferative and hypertrophic zones (MacRae et al.

2009). SOCS2 gene and protein are expressed preferentially by

proliferating the chondrocytes of the growth plate suggesting

that the increased bone growth and observed structural

differences within the growth plate observed in socs2 null mice

are direct consequences of altered SOCS2 (MacRae et al. 2009).

Also, based on observations on other cell types, it is possible that

SOCS2 may be linked to the transition from the proliferative to

the differentiated chondrocyte phenotype (Goldshmit et al.

2004, Wang et al. 2004, Ouyang et al. 2006). The effect of

SOCS2 deficiency on chondrocyte proliferation, apoptosis and

matrix synthesis has yet to be determined.

Enhanced growth of socs2 null mice is not observed until

3–4 weeks of age (Metcalf et al. 2000, Macrae et al. 2009), and

this is consistent with the concept that SOCS2 interacts with

GH to negatively regulateGH function. Inhibition of growth in

GH-deficient mice is not observed until w14 days after birth,

and peak GH activity occurs between postnatal days 20 and 40

(Lupu et al. 2001, Wang et al. 2004). Additionally, the increased

growth of socs2 null mice is not observed whenmutant mice are

mated with either mice lacking the STAT5b gene or those with

a point mutation in the Ghrhr lit/lit mice (Greenhalgh et al.

2002, 2005). Furthermore, administration of GH to socs2K/K/

Ghrhr lit/lit mice caused an increase of growth to a size

indistinguishable from socs2 null mice (Greenhalgh et al. 2005).
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These observations provide further proof that the socs2K/K

overgrowth phenotype is dependent on aberrant GH signalling.

While the role of SOCS2 in down-regulating GH signalling is

widely accepted, its role in inhibiting IGF1 action is more

speculative, although SOCS2 has been shown to bind to the

IGF1 receptor and limit the growth-promoting actions of IGF1

in vivo (Dey et al. 1998, Michaylira et al. 2006). Interestingly,

most organs in socs2 null mice are enlarged, including those in

which elevated IGF1 is not detected which possibly indicates

that SOCS2 is also required for the regulation of IGF1 signalling

itself (Metcalf et al. 2000). Indeed, a role for SOCS2 in regulating

both GH and IGF1 signalling in organ-specific contexts is

consistent with the observation that socs2 null mice exhibit

characteristics of both GH and IGF1 transgenic mice without

entirely recapitulating either phenotype (Metcalf et al. 2000).

In vitro data have further discussed the biological role of

SOCS2 in mediating GH action. At low concentrations,

SOCS2 inhibits GH signalling (Ram & Waxman 1999).

However, higher concentrations of SOCS2 restore and even

stimulate GH signalling, suggesting a further positive mod-

ulatory role for SOCS2 in restoring the sensitivity of inhibited

GH signalling in circumstances when it is suppressed by other

SOCSproteins (Favre et al. 1999,Greenhalgh et al. 2002). In vivo

studies in mice demonstrating that both the absence and

overexpression of SOCS2 cause growth enhancement support

these in vitro findings (Metcalf et al. 2000, Greenhalgh et al.

2002). It has, therefore, been proposed that SOCS2 regulates

growth by exerting a dual effect on GH signalling. Both

inactivation and overexpression of SOCS2 result in enhanced

GH signalling and growth, whereas physiological levels of

SOCS2 reduce GH signalling. Glucocorticoids, including

dexamethasone, are also thought to upregulate SOCS2,

desensitise GH signalling and suppress growth (Tollet-Egnell

et al. 1999, Rico-Bautista et al. 2006).

A similar phenotype to socs2 null mice has also been

observed in the high growth (hg) mouse, a phenotype

that occurs following a spontaneous 500-kb deletion in

chromosome 10 of the mouse (Horvat & Medrano 1995,

1998, 2001). Since the initial discovery of the hg phenotype,

the SOCS2 gene has been mapped to the hg chromosomal

region possibly explaining the almost identical phenotype: a

30 to 50% increase in postnatal growth (Horvat & Medrano

2001). Interestingly, however, unlike the socs2 null mice, the hg

mice have elevated levels of circulating IGF1whichmay be due

to a deletion of other genes or DNA segments flanking the

SOCS2 locus (Horvat & Medrano 2001).
SOCS3

Mice lacking SOCS3 expression are embryonically lethal with

death occurring at mid-gestation between days 11 and 13 of

embryonic development. At this stage, the embryos appear

normal but present with a mild growth retardation. The

developmental arrest and death were considered to be due to

defects in placental development possibly as a result of excess

cytokine signalling (Marine et al. 1999, Roberts et al. 2001).
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In comparison to CIS, SOCS1 and SOCS2, preferential

induction of SOCS3 mRNA by GH is observed in fibroblasts

and hepatocytes. Also constitutive expression of SOCS3

(and SOCS1), but not SOCS2 or CIS resulted in a complete

block of GHR-mediated signalling (Adams et al. 1998, Hansen

et al. 1999). These data suggest, albeit not in the chondrocytes of

the growth plate, that SOCS3 is preferentially stimulated byGH

which results in the complete inhibition of GH signalling.

The implications for this on bone growth are unknown due to

the embryonic lethality of the socs3 null mouse. Knowledge

gleaned from studieswith articular chondrocytes does, however,

suggest that SOCS3 is likely to influenceGH/IGF1 signalling in

epiphyseal chondrocytes. SOCS3 overexpression of murine

articular chondrocytes inhibits IL1-induced STAT1 andSTAT3

phosphorylation as well as inhibits IGF1-induced aggrecan

expression through antagonising insulin receptor substrate 1

phosphorylation (Smeets et al. 2006).
The SOCS proteins and their effect on bone

Given that the majority of studies performed have investigated

the effects of SOCS1–3, this section has been restricted to the

effect of these proteins.
SOCS1

Mice with homozygous inactivation of the gene encoding the

SOCS1 protein die within 21 days of birth with low body

weight, fatty degeneration and necrosis of the liver,

infiltration of the lung, pancreas, heart and skin by

macrophages and granulocytes and a profound depletion of

T- and B-lymphocytes (Starr et al. 1998, Metcalf et al. 1999).

In the socs1 null mice, calvarial cells showed distinct

phosphorylation of STAT1, but this was hardly detectable

in wild-type (WT) mice (Abe et al. 2006). Undercalcified

areas in the skulls and sternum, as well as comparatively

thinner calcified areas in cortical bone, were found in socs1

null mice. Mineralisation activity of primary cultured calvarial

cells strongly suggested significant impairment in osteoblasts

of socs1 null mice. In situ hybridisation analysis demonstrated

that these mice showed a dramatic decrease in the expression

level of osteocalcin, a late marker of osteoblast maturation.

Osteoclastogenesis stimulation by RANKL is associated with

increased expression of IFN-b which itself inhibits the

differentiation of osteoclasts. However, RANKL simul-

taneously induces the expression of SOCS1, which can

block the signalling of IFN-b, thus causing a decrease in IFN-

dependent transcription factor complex (IFN-stimulated

gene factor-3) formation (Hayashi et al. 2002). Thus,

although the inhibitory cytokines such as type-I IFNs are

produced in response to RANKL, the inhibition of

osteoclastogenesis may be rescued by inducing the production

of signalling suppressors such as SOCS, and this was further

confirmed in experiments of SOCS1 overexpression in

mouse bone marrow-derived monocytes which conferred
www.endocrinology-journals.org
resistance to the suppression of osteoclast differentiation by

IFN (Ohishi et al. 2005). Consistent with this report, a

notable suppression of osteoclast formation and bone

destruction induced by lipopolysaccharides have also been

reported in socs1C/K mice which have a haploinsufficiency of

the socs1 gene (Ohishi et al. 2005).
SOCS2

Dual energy X-ray absorptiometry analysis of the socs2 null

mouse demonstrated that the areal bone mineral density

(aBMD) was reduced in the total tibia. Subregion analyses in

the proximal metaphyseal region of the tibia, with a relatively

high content of trabecular bone, indicated that the reduced

aBMD was due, at least partly, to a reduced trabecular BMD

(Lorentzon et al. 2005). Peripheral quantitative computed

tomography analyses demonstrated that both the trabecular

and cortical volumetric BMD were reduced. The cortical

cross-sectional area and cortical thickness were reduced in

4-week-old mice but not in 15-week-old socs2K/K mice,

suggesting that the main effect on aBMD was a result of

reduced trabecular and cortical volumetric BMD, and to a

lesser extent due to reduced size of the cortical bone.

However, more detailed studies performed recently using

micro-computed tomography showed that although cortical

and trabecular BMD were similar in the socs2 null mice and

WTmice, the tibiae in 7-week-old socs2 null mice tibiae were

longer, broader and had increased total cross-sectional bone

area, increased percent bone volume, trabecular number and

trabecular thickness, with associated decreases in trabecular

separation (Macrae et al. 2009). The structure model index,

which quantifies the characteristic form of a 3D structure in

terms of amounts of plates and rods composing the structure

(Hildebrand & Rüegsegger 1997), was also significantly lower

in the tibiae from the socs2 null mice indicating that the

trabeculae in socs2 null mice appeared to be more ‘plate-like’

and more connected, which is consistent with greater

‘strength’. Osteocalcin and TRAP5b, respective markers of

bone formation and resorption, were also reported to be

higher in the socs2 null mice. Thus, while the overall BMD

may not be significantly altered, a number of microarchi-

tectural markers of bone strength were significantly raised in

both the trabecular and cortical compartments of bone in the

socs2 null mouse which is known to have increased growth

without systemically raised concentrations of IGF1 (Metcalf

et al. 2000). In the C2C12 mesenchymal precursor cell line,

stable transfection of SOCS2 potentiated bone morphogenic

protein-induced transdifferentiation of C2C12 cells into

osteoblast phenotypes (Ouyang et al. 2006). This effect was

observed to be due to regulation of JunB protein synthesis

and was independent of the GH signalling pathway (Ouyang

et al. 2006). These data suggest that it is possible that

GH dependent and independent pathways may both be

responsible for the bone phenotype of the socs2 null mouse.

The bone phenotype of the socs2 transgenic mice has not yet

been described (Greenhalgh et al. 2002).
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factors may induce an effect that alters the overall disease process.
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SOCS3

The socs3 null phenotype is embryonically lethal, and the effect

of this genotype on bone is less clear. In osteoclastogenesis,

SOCS3 seems to play a similar role as SOCS1 in dampening the

inhibitory action of IFN-b on osteoclastogenesis (Hayashi et al.

2002, Lovibond et al. 2003). This inhibitory effect of SOCS3 on

IFN-bmayalso be the pathway throughwhichTGF-b facilitates
osteoclast formation (Fox et al. 2003). In the osteoblast-like

osteosarcoma cell line, UMR 106, which expresses a

GH-responsive JAK2/STAT5 signalling system, pretreatment

with 1,25 dihydroxy-vitamin D is associated with increased and

sustained responsiveness to repeat pulses of GH stimulation.

It seems that this may be due to a reduced GH-induced

expression of SOCS3 and CIS (Morales et al. 2002).
Clinical and therapeutic relevance

Childhood inflammatory bowel diseases, especially those such

as Crohn’s disease, are commonly complicated by growth

retardation and osteoporosis. Pro-inflammatory cytokines are

often elevated in such conditions, and improvement of the

disease status is often associated with an improvement in

growth and skeletal health. Children with chronic inflam-

matory diseases show elevation of a range of anti- and pro-

inflammatory cytokines (Wong et al. 2008). The systemic

GH/IGF1 axis in these children can also show a range of

abnormalities (Wong et al. 2010). GH therapy has been used

to improve the growth of children with chronic diseases

(Wong et al. 2007) and may alter systemic concentration of

cytokines (Pagani et al. 2005, Andiran & Yordam 2007). The

SOCS proteins may be central to the underlying pathophy-

siology of these observed effects (Walters & Griffiths 2009;

Fig. 3) at systemic and local levels, and require further study.
Conclusion

In conclusion, effective GH signalling, particularly at the level of

the target tissue, is vital for optimal linear growth and skeletal
Journal of Endocrinology (2010) 206, 249–259
development. SOCS proteins are known inhibitors of GH

signalling, but their actions vary from one family member to

another and their role may differ depending on the target tissue.

There is a need for more translational studies in this field to

explore the role of SOCS proteins in mediating the effects of

chronic inflammationon linear growth and skeletal development.
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