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The transcriptional interactome: gene expression in 3D
Stefan Schoenfelder, Ieuan Clay and Peter Fraser
Transcription in the eukaryotic nucleus has long been thought

of as conforming to a model in which RNA polymerase

complexes are recruited to and track along isolated templates.

However, a more dynamic role for chromatin in transcriptional

regulation is materializing: enhancer elements interact with

promoters forming loops that often bridge considerable

distances and genomic loci, even located on different

chromosomes, undergo chromosomal associations. These

associations amass to form an extensive ‘transcriptional

interactome’, enacted at functional subnuclear compartments,

to which genes dynamically relocate. The emerging view is that

long-range chromosomal associations between genomic

regions, and their repositioning in the three-dimensional space

of the nucleus, are key contributors to the regulation of gene

expression.
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Introduction
Almost two centuries after its discovery, it is clear that the

eukaryotic nucleus is a highly organized organelle, with

more than ten specialized subnuclear compartments

described [1]. Chromatin itself is organized in a dynamic

continuum of structuring that scales from chromosome

territories [2,3] through higher order folding of chromatin

domains [4,5] to accessibility of the chromatin fibre [6,7].

Chromosome territories do not possess rigid boundaries,

and neighboring chromosomes can intermingle [8], offer-

ing the possibility for long-range regulatory contacts and

functional compartmentalization among distal or

unlinked genomic regions [9]. A combination of chromo-

some conformation capture (3C) technologies [10] and

microscopy have catalyzed the discovery of long-range

chromosomal interactions in a variety of cellular pro-

cesses, including transcription [11–14,15�,16�,17�],
recombination [18,19], Polycomb mediated gene silen-
www.sciencedirect.com
cing [20,21,22], and X chromosome inactivation [23,24].

These findings suggest that functional intrachromosomal

and interchromosomal associations are at the heart of

many genome functions. In this review, we focus on

long-range intrachromosomal and interchromosomal

interactions and associations involved in RNA polymer-

ase (RNAP) II transcription, which form the ‘transcrip-

tional interactome’.

From a distance: long-range enhancer-
promoter interactions
Regulatory DNA elements such as enhancers or locus

control regions (LCRs) can act over considerable genomic

distances. The Hbb LCR is found in close spatial proximity

to its target genes in erythroid cells, causing the intervening

50 kb of DNA sequences to loop out [4,5]. Similar, tissue-

specific chromosomal associations between genes and regu-

latory elements have been detected at many loci in the

genome, including the Kit [25], H19/Igf2 [26,27], and T

helper 2 (TH2) cytokine loci [28,29]. Genomic distance does

not appear to be an obstacle, as the Sonic hedgehog (Shh)

limb bud-specific enhancer has been shown to interact with

its target promoter one megabase away [30�]. These

examples are likely to be the tip of the iceberg: Genome-

wide association studies have identified many disease-

linked single nucleotide polymorphisms (SNPs) that

map, often some distance, outside of annotated genes,

indicating potential regulatory function [31]. For example,

the SNP rs6983267, associated with increased risk of color-

ectal cancer, is located in a gene desert at human chromo-

some 8q24 [32]. The region surrounding rs6983267acts as an

enhancer in reporter gene assays [33] and interacts with the

promoter of the Myc oncogene, located �330 kb away [34].

Increasing numbers of examples suggest that regulatory

DNA elements also seem capable of undergoing func-

tional contacts with genes located on other chromosomes.

In naı̈ve T lymphocytes, the TH2 LCR, located on

chromosome 11, interacts with the interferon-g gene on

chromosome 10 [12]. In sensory neurons, the H enhancer

element contacts multiple olfactory receptor genes on

different chromosomes, and its interaction with a single

gene in a given sensory neuron has been proposed to

determine the choice of olfactory receptor gene expres-

sion [35]. However, deletion of the H element does not

affect the expression of odorant receptor genes in trans
[36]. While these conflicting findings may be reconciled

by the existence of redundant H-like enhancer elements,

further analysis is clearly required. The imprinting con-

trol region upstream of the H19 gene also engages in long-

range contacts, although there is considerable discrepancy

about the number of interacting loci, ranging from three
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[37] to over one hundred [38]. Importantly, deletions or

point mutations introduced into regulatory elements

affect the expression of interacting genes on different

chromosomes [12,38]. As a whole, this evidence points to

a functional crosstalk between distal chromosomal

regions, potentially expanding the regulatory capacity

of the genome to a great extent.

Stand by me: co-associations of active genes
at shared transcription factories
Co-associations of active genes at shared subnuclear com-

partments, such as transcription factories, may represent

another class of chromosomal interactions. In this case,

rather than DNA elements engaging directly in intrachro-

mosomal and interchromosomal associations, it appears

likely that the genomic loci simply co-associate with shared

specialized subnuclear microenvironments to take

advantage of, and potentially contribute to, increased local

concentrations of specific factors required for gene expres-

sion. Transcription factories are highly enriched in the

active, hyper-phosphorylated forms of RNAPII [39,40].

RNA FISH studies have shown that transcription of indi-

vidual alleles occurs almost exclusively in association with

transcription factories [11,14,41]. By contrast, temporarily

inactive alleles are positioned away from transcription

factories, suggesting that genes migrate to these subnuc-

lear sites in order to be transcribed [42]. Crucially, the

number of transcription factories per cell is severely limited

compared to the number of expressed genes, compelling

genes to share the same transcription factory [11]. A

genome-wide screen for sequences that share transcription

factories with the transcriptionally active mouse alpha-

globin and beta-globin genes revealed preferential associ-

ations with hundreds of other transcribed loci, identifying

extensive intrachromosomal and interchromosomal tran-

scription networks [43��]. Among the globin-interacting

loci, genes regulated by the erythroid transcription factor

Klf1 were overrepresented. Further investigation revealed

Klf1-regulated genes preferentially clustered at a limited

number of transcription factories containing high levels of

Klf1, suggesting that individual factories could become

specialized hotspots for the transcription of a preferential

network of genes (Figure 1a). These results support the

finding that episomal reporter constructs with similar pro-

moters have a greater tendency to cluster at shared tran-

scription factories than constructs with heterologous

promoters [44]. At present it is not known whether

three-dimensional clustering of similarly regulated genes

at transcription factories is a cause or consequence of the

specific transcription factor-enriched microenvironment.

However it appears that these specialized factories are

optimized sites with increased probability of transcrip-

tional initiation and re-initiation of preferential networks

of genes [43��].

Juxtaposition of active genes has also been observed at

nuclear speckles [45,46], large subnuclear domains
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marked by the splicing factor Sc-35. As transcription

and splicing are not only temporarily, but also spatially

tightly linked [47,48], it is conceivable that these associ-

ations are a consequence of transcriptional co-associations

between active genes at transcription factories. Currently,

experimental evidence to support a functional role for Sc-

35 speckles in gene co-associations, such as genetic

ablation or RNAi knockdown of Sc-35, or in vivo disas-

sembly of nuclear speckles [49], is missing. By contrast,

accumulating data support the concept of transcription-

factor mediated associations between active genes (see

below).

Hold me close: protein factors required for
long-range chromatin interactions
Several studies have implicated transcription factors in

the establishment of three-dimensional active chromatin

conformations, thus expanding their classical textbook

function. For example, the erythroid transcription factors

Klf1 [50] and GATA-1 [51] are required for the tissue-

specific active chromatin conformation at the Hbb LCR.

GATA-2 fulfills a related function at the Kit locus [25],

and contacts between the TH2 LCR and promoters of

protein-coding genes in the locus require the transcrip-

tion factors GATA3 and STAT6 [28]. Notably, transcrip-

tion-factor mediated interactions are not confined to the

establishment of ‘local’ chromatin associations required

for gene activation. Estrogen receptor a (ERa) bound

genomic regions form a chromatin ‘interactome’ of prim-

arily intrachromosomal interactions [17�], but ERa also

mediates interchromosomal interactions [16�]. Similarly,

genomic loci bound by the androgen receptor (AR)

undergo intrachromosomal and interchromosomal associ-

ations [52��]. In response to viral infection, specific inter-

actions between NF-kB bound genomic sites have been

observed [15�]. Finally, intrachromosomal and interchro-

mosomal associations between Klf1-regulated genes at

transcription factories are specifically disrupted in ery-

throid cells lacking Klf1 [43��]. Thus, accumulating evi-

dence suggests that transcription factors influence the

establishment of local active chromatin conformations as

well as the three-dimensional positioning of active genes

and their chromosomal associations in the nucleus.

Proteins involved in chromatin architecture have also

been implicated in mediating interactions between chro-

mosomal regions. For example, at the mouse TH2 cyto-

kine locus, SATB1 mediates associations between regions

in cis to generate a three-dimensional, active chromatin

configuration [29]. The H19 imprinting control region

associates with multiple genomic loci, mainly via its

maternal allele that binds the chromatin insulator protein

CTCF [38]. Interestingly, recent studies have revealed

that binding of CTCF and cohesin, a protein complex

previously known for its essential role in sister chromatid

cohesion [53], overlap at many sites across the human and

mouse genomes [54,55]. Cohesin and CTCF cooperate to
www.sciencedirect.com
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Figure 1

Proximity of active genes in a shared transcription factory. (a) Co-regulated genes cluster in a specialized transcription factory. Transcription factors

(yellow, red, and blue) bind their target genes while probing their nuclear environment. Upon relocation to a transcription factory, potentiated genes

initiate transcription (nascent transcripts depicted in yellow and red). Dynamically bound transcription factors may dissociate from their target genes,

freeing transcription factors for use by other co-regulated genes in close proximity. Thus, genes in a factory with other co-regulated genes may have a

higher probability of re-initiation in that factory through dynamic exchange of transcription factors, stabilizing their presence there. By contrast, genes

transcribing in the absence of other network partners (genes regulated by red and blue factors) may be more likely to dissociate from the factory after

an initial burst of transcription. Repetition of factor dissociation and binding cycles would result in a transcription site highly enriched in specific binding

sites and factors, seemingly specialized to preferentially transcribe a subset of co-regulated genes. (b) Close proximity between transcripts generated

in a transcription factory may allow specific exons to be joined by trans-splicing. (c) Juxtaposition of active genes in a shared transcription factory may

also increase the probability of translocations between loci.

www.sciencedirect.com Current Opinion in Genetics & Development 2010, 20:127–133



130 Chromosomes and expression mechanisms
mediate chromatin interactions in cis at the human IFNG,

APO A1/C3/A4/A5 and H19/Igf2 gene loci [56�,57�,58]. It is

tempting to speculate that cohesin utilizes its ability to

hold chromosomal regions together for the establishment

and/or maintenance of other intrachromosomal, and

potentially interchromosomal, associations.

Do the loco-motion: movement of
chromosomal loci in the nucleus
How do genomic regions ‘find’ each other and/or nuclear

compartments in the complex nuclear environment, in

order to establish chromosomal associations? In general,

chromatin motion is regionally constrained in the nucleus

[59]. However, this does not exclude the possibility that

genomic regions probe their nuclear environment by

Brownian motion over relatively short distances, with

subsequent stabilization of preferred associations.

Active, directed long-range chromatin movements have

also been reported. Targeting of a transcriptional acti-

vator to a transgene array resulted in relocation from the

nuclear periphery to the interior, over distances of up to

5 mm [60]. Upon transcriptional induction, movements

over 2–3 mm toward a Cajal body were observed for an U2

snRNA transgene array [61]. Interestingly, actin [60,61]

and myosin [60] have been implicated in these chromatin

movements. Similarly, the interchromosomal association

between the estrogen-regulated TFF1 and GREB1 genes

depends on actin, nuclear myosin I, and the dynein light

chain-1 (DLC1) [16�], and interference with actin

polymerization or nuclear myosin I function abolished

interchromosomal interactions between the androgen

receptor bound TMPRSS2 and ETV1 genes [52��].
Numerous studies have observed a role for nuclear actin

and myosin in transcription [62], but how the actin/

myosin system is mechanistically involved in the reloca-

tion of genes and transcription is presently unclear.

Treatment with drugs that inhibit actin polymerization

or depolymerization interfere with interchromosomal

associations between nuclear receptor bound genes

[16�,52��], and overexpression of a nonpolymerizable

actin mutant abolished the interaction between Cajal

bodies and the U2 array [61], indicating that actin fila-

ments might be involved in these movements. Long

actin filaments, comparable to those found in the cyto-

plasm, have not been detected in mammalian nuclei.

This does not, however, exclude the existence of rela-

tively short, highly dynamic actin filaments upon which

nuclear myosin could act to promote directed gene move-

ments.

Too close for comfort: translocations and
trans-splicing
Juxtaposition of active genes may maximize transcrip-

tional output or allow their co-regulation, but is not

without risks for the cell. For example, translocation

prone gene loci are often found in close spatial proximity

in the nucleus [63]. Myc and Igh, frequent translocation
Current Opinion in Genetics & Development 2010, 20:127–133
partners in Burkitt’s lymphoma and mouse plasmacy-

toma, preferentially associate at a shared transcription

factory in mouse B lymphocytes [14]. In prostate cancer

cells, transcriptional activation of androgen receptor

bound genes induces not only their intrachromosomal

[52��,64] and interchromosomal [52��] co-localization, but

also, upon treatment with agents that cause DNA double

strand breaks, translocation events between these loci.

Furthermore, interfering with the association between

TMPRSS2 and ETV1 inhibited translocation between the

two loci [52��]. Together, these findings suggest that co-

localization of transcribed genes provides an opportunity

for chromosomal translocations.

It has also been suggested that proximity of active genes

at shared transcription factories may facilitate trans-spli-

cing [65,66], a process in which exons from separate pre-

mRNAs are joined to create chimeric RNAs. First dis-

covered in trypanosomes [67], trans-splicing also exists in

mammals, and can involve sequences from the same

chromosome [68,69,70], or located on different chromo-

somes [71,72��]. For most trans-spliced products, evi-

dence for a functional role is lacking. However, the

ability of trans-splicing to complement genetic mutations

[73] has been exploited in gene therapy strategies

[74,75,76], and demonstrates it represents an essential

mechanism for gene function. A recent report describes a

striking correlation between translocations and trans-spli-

cing [72��]. In human stromal cells, trans-splicing joins

exons from the JAZF1 and JJAZ1 genes to produce a

chimeric RNA, which is translated into a protein with

anti-apoptotic function. Remarkably, the chimeric RNA

and protein are identical to those generated by a translo-

cation found in stromal tumor cells. One possible expla-

nation for this finding is that trans-splicing might

predispose genomic loci for chromosomal exchange

[72��]. An alternative possibility is that spatial proximity

between the two loci allows the production of chimeric

RNAs by trans-splicing in normal stromal cells, whereas

the juxtaposition becomes ‘fixed’ via translocation in

some cells, allowing them to proliferate as cancer cells.

In this scenario, the common denominator underlying the

generation of chimeric JAZF1-JJAZ1 RNA in normal and

cancer stromal cells would be close proximity in nuclear

space, possibly at a shared transcription factory

(Figure 1b,c). It is puzzling that a genome conformation

that increases the risk of potentially grave translocations

can evolutionarily persist. We speculate that three-

dimensional gene clustering of transcribed loci must elicit

evolutionary advantages that outweigh the dangers of

translocations.

Conclusions and outlook
Fuelled by the 3C assay [10] and its modifications, our

understanding of genome structure and function has

remarkably expanded over the past five years. Novel

genome-wide proximity ligation assays such as Hi-C
www.sciencedirect.com
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[77��] and ChIA-PET [17�] now offer the possibility of

mapping whole genome conformations. These ‘anchor-

free’ assays have the potential to describe connectivity

between all loci in the genome, albeit, compared to

analyses of chromosomal associations focusing on specific

bait loci [13,38,43��], this may currently come at the

expense of a reduced resolution for specific interactions.

Nevertheless, aided by the ever-increasing power and

rapidly falling cost of high-throughput DNA sequencing,

the characterization of the complete repertoire of chromo-

somal interactions within a cell type now seems an achiev-

able goal. However, caution must be applied when using

3C approaches to study the dynamics of genome organiz-

ation. Active genes are transcribed in non-synchronous

bursts [78,79], and transcription factory associations be-

tween genes in a preferred network vary strongly from cell

to cell [43��]. This suggests that the transcriptional inter-

actome is inherently plastic and that a ‘single solution’

describing the complete spatial arrangement of the gen-

ome in a particular cell type does not exist. Thus, one

inevitable caveat of 3C assays, because they describe the

average conformation in a population of cells, is their

failure to account for cell-to-cell heterogeneity.

We propose that spatial clustering between co-regulated

genes is a widespread phenomenon. Three-dimensional

gene clustering is not only limited to RNAPII transcrip-

tion units, but has also been described for genes tran-

scribed by RNAPIII [80] and RNAPI—in fact, the

nucleolus can be regarded as the archetypical example

of a specialized transcription factory [81]. Other types of

specific or preferred interactions are thought to mediate

transcriptional repression [20,21]. Furthermore, during

immunoglobulin recombination in B cell development

[19], and at the onset of X chromosome inactivation

[23,24], transient interactions between homologous chro-

mosomal regions are involved in establishing polar oppo-

site states of transcriptional activity on homologous

alleles, or indeed entire chromosomes. We predict these

multiple dynamic chromosomal interactions will together

drive higher order chromosome conformations, and tis-

sue-specific chromosome positioning [82]. Alteration of

gene expression programs during differentiation, devel-

opment, and nuclear reprogramming [83] will probably be

associated with and may require corresponding changes in

the nuclear interactome. A major challenge will be to

decipher the relation between these genome confor-

mation changes and the numerous epigenetic alterations

of the genome, allowing their integration into a compre-

hensive picture of the spatial and functional organization

of the nucleus.
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