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SUMMARY 

Reference centile curves show the distribution of a measurement as it changes according to some covariate, 
often age. The LMS method summarizes the changing distribution by three curves representing the median, 
coefficient of variation and skewness, the latter expressed as a Box-Cox power. Using penalized likelihood 
the three curves can be fitted as cubic splines by non-linear regression, and the extent of smoothing required 
can be expressed in terms of smoothing parameters or equivalent degrees of freedom. The method is 
illustrated with data on triceps skinfold in Gambian girls and women, and body weight in U.S.A. girls. 

INTRODUCTION 

Reference centile curves are used widely in medical practice as a screening tool. They identify 
subjects who are unusual, in the sense that their value of some particular measurement, for 
example, height or weight or plasma prolactin, lies in one or other tail of the reference 
distribution. The need for centile curves, rather than a simple reference range, arises when the 
measurement is strongly dependent on some covariate, often age, so that the reference range 
changes with the covariate. The case for making the centile curves smooth is to some extent 
cosmetic - the centiles are more pleasing to the eye when smoothed appropriately - but there is 
also the underlying justification that physiologically, small changes in the covariate are likely to 
lead to continuous changes in the measurement, so that the centiles ought to change smoothly. In 
such cases, fitting discontinuous curves could lead to substantial bias. 

The literature on fitting smooth centiles to reference data has mushroomed in the last few 
years.'-9 The techniques discussed fall into two broad categories, those that require 'com- 
monality' between adjacent centile curves, and those that do not. Commonality here means that 
the spacings between centiles are constrained to be related to each other, whereas without 
commonality the centiles can be entirely independent of their neighbours, to the extent that in the 
limit, adjacent curves may touch or even cross. 

To ensure commonality, some form of distributional assumption has to be made, implicitly or 
explicitly. Healy et al.' expressed the assumption as a constraint, that the spacings between 
centiles be expressible as a low-order polynomial in the underlying standard deviation score (SD 
score or Z score). Pan et aL6 extended this idea to a series of piecewise polynomials. Thompson 
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and Theron' by contrast fitted a family of Johnson curves to the data, with suitable smoothness 
const rain t s. 

Cole2*' assumed an underlying skew normal distribution of the measurements, so that a 
suitable power transformation'O would render the distribution normal. In the latter method, the 
distribution at each covariate value is summarized by three parameters, the Box-Cox power I, 
the mean p and the coefficient of variation cr, and the initials of the parameters give the name to 
the LMS method. The three parameters are constrained to change smoothly as the covariate 
changes, and can, like the centiles, be plotted against the covariate. Thus, one advantage of the 
LMS method is that the three curves, L, M and S, completely summarize the measurement's 
distribution over the range of the covariate, and in addition they may be of interest in their own 
right. Other distributionally based methods share this advantage. 

A key assumption of the LMS method is that after a suitable power transformation, the data 
are normally distributed. Anthropometry measurements, particularly weight and height, tend to 
follow this  att tern,^.^ and many other variables are of the same form. The main problem with the 
assumption may be the presence of kurtosis, which the transformation does not adjust for, but 
kurtosis tends to be less important than skewness as a contributor to non-normality. 

Green3 highlighted the subjective and complex nature of Cole's fitting algorithm for the LMS 
method - in particular the need to group the data, essentially arbitrarily, according to the value of 
the covariate. He pointed out that the method of maximum penalized likelihood" could be used 
to provide smooth estimates of the L, M and S curves directly, thus avoiding the need to group 
the data, and the only input required from the user would be the choice of smoothing constants 
for the three curves. 

The purpose of this paper is to describe in more detail the method of maximum penalized 
likelihood as applied to the LMS method. 

METHODS 

The LMS method 

The variable of interest, denoted by y, is assumed positive. Suppose that y has median p, and that 
y A  (or if ,4 = 0, log, (y)) is normally distributed. It is then appropriate to consider the transformed 
variable 

I f 0  (YIPL)A - 1 x =  
I '  

or 

x = lOge(Y/P), A = O  

based on the family of transformations proposed by Box and Cox." This transformation maps 
the median ,u of y to x = 0, and is continuous at I = 0. For A = 1 the standard deviation (SD) of x 
is exactly the coefficient of variation (CV) of y, and this remains approximately true for all 
moderate 3,. The optimal value of A is that which minimizes the SD of x. 

Denoting the SD of x (and the CV of y) by a, the SD score of x and hence of y is given by 

z = x/a 
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or 

and it is assumed that z has a standard normal distribution. 

off the smooth curves L(t), M ( t )  and S ( t ) .  It follows that 
Assume now that the distribution of y varies with covariate t, and that 1, p and (r at t are read 

or 

Rearranging (3) shows that the centile lOOu of y at t is given by 

ClO0,(t) = M ( t )  (1 + L(t)S(t)Z,)”L(‘) 

c100. (0 = M (t) expCS (t) Z,l 

L(t)  # 0 

L(t )  = 0 

or 

where Z ,  is the normal equivalent deviate (NED) of size u. This shows that if the L, M and S 
curves are smooth, then so are the centile curves. 

(4) 

Maximum penalized likelihood 

For the case of n independent observations {y,} at corresponding covariate values {ti}, the log- 
likelihood function L‘ derived from (3) is given (apart from the constant) by 

L‘ = L‘(L: M ,  S )  = 
i =  1 

where {zi} are the SD scores corresponding to {y,}. The curves L(t), M( t )  and S ( t )  are estimated by 
maximizing the penalized likelihood 

f - )a, (L”(t)}’dt - +a, { M”(t)}’dt - )a, {S”(t)}2dt (6) s I s 
where aA, a, and a, are smoothing parameters. The three integrals provide roughness penalties 
according to the squared second derivatives of the L, M and S curves, so that maximizing (6) 
strikes a balance between fidelity to the data and smoothness of the L, M and S curves. See 
Silverman” and Green’’ for a fuller discussion of the principle. It can be shown that these forms 
of penalty lead to natural cubic splines with knots at each distinct value of t. Thus only the 
smoothing parameters a,, a, and a, need to be chosen in order to fit the model. 

The log-likelihood function (6) can be maximized iteratively using Fisher scoring, with an 
updating reminiscent of ridge regression.’ ’ This involves deriving the first and second derivatives 
of 8 with respect to L, M and S,  denoted by u, and l+’* etc. See the Appendix for details. 

The complexity of each fitted cubic spline curve, for example I ,  is measured by its ‘equivalent 
degrees of freedom’ (e.d.f.),14 defined as 

(7) e.d.f. , = trace ( W, + a&)- ’ W, 
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calculated at convergence. This expression appears to imply a one-to-one correspondence 
between each a and its e.d.f., but in fact the matrices W,, W,, and W, depend on all three fitted 
curves (8) and hence on all three a’s. However, in practice it is found that each e.d.f. is substantially 
influenced only by its corresponding a, and very little by the other two. 

Initial choices for the smoothing are obtained as foIlows: 

n fit)’ 
400 r(yI2 

up = 

u, = 2ji2a, 

u1 = 04u,, 

where r (t) is the range oft, r (y) is the range of fitted y, and ,ii and 0 are typical values of p and 0. 

The dependence on r (t) and r (y) provides the mathematically correct equivariance to scale and 
origin in the data, while the ratios between the u’s are derived heuristically from consideration of 
the values of W,, W, and W,, and the constant n/400 is chosen empirically to provide e.d.f. of 
about 5 or 6 for approximately uniformly distributed t’s. The empirical relationship between u 
and e.d.f. is approximately linear on a log-log scale, with a slope near to - 5. 

A FORTRAN program has been developed to implement the method. The outer loop iteration 
converges when the change in penalized log-likelihood is less than 0.01, while the inner loop 
criterion is for the sum of absolute changes in o* (9) to be less than 0901. The degree of smoothing 
required can be specified either by u or by e.d.f. The latter proves more convenient in practice, and 
has also been suggested by Hastie and Tibshirani. l 4  

DATA 

Two sets of data are used to illustrate the method. The first is an anthropometry survey of 892 
girls and women up to age 50 in three Gambian villages, seen during the dry season of 1989; 620 
(70 per cent) of the subjects were aged under 20. There were 733 distinct ages in the dataset. Five 
anthropometric measurements were taken, but just the triceps skinfold is discussed here. 

The second example consists of body weight in 4011 U.S. girls aged between 1 and 21 years, 
obtained as part of the American HANES1 Health and Nutrition Survey.15 This dataset, 
consisting of 1657 distinct ages fairly uniformly distributed, was used by Colea to illustrate the 
separate age group method of fitting the LMS method. 

RESULTS 

Figures 1 (a)-(c) show the L, M and S curves for triceps skinfold in Gambian females from birth to 
age 50 years, over a range of fitted e.d.f. between 3 and 15. For clarity the curves are offset from 
each other (by 0.1 units for L, 0 5  mm for M, and 0.03 units for S), and the central bold curve (with 
9 e.d.f.) is the baseline. The fitted e.d.f. extend up to 15 to allow for sufficient detail to emerge in the 
curves during the growth phase. 

The smoothest curves, with 3 e.d.f., are almost quadratic in shape, and provide a very poor fit to 
the data. As the e.d.f. increase the curves become more complex, and with 6 or 9 e.d.f. the broad 
shapes of the curves are clear. Conversely with 15 e.d.f. the curves are obviously undersmoothed. 
All the L curves (Figure 1 (a)) show a period around puberty when the Box-Cox power of the 
distribution dips sharply, below a value of - 0.6, indicating an increase in skewness to the right. 
The effect of smoothing is to flatten out the trough, so that it becomes wider and more diffuse as 
the e.d.f. fall. The M curves (Figure 1 (b)) all show high triceps values in early childhood, followed 
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Figure 1. Triceps skinfold in Gambian females from birth to age 50 years, fitted by a series of spline curves with between 3 
and 15 equivalent degrees of freedom 

(a) BoxXox power (L). The curves are offset by 01  units from their neighbours, with the baseline in bold 
(b) Median (M). The curves are offset by 05 mm from their neighbours, with the baseline in bold 
(c) Coefficient of variation (s). The curves are offset by 003 units from their neighbours, with the baseline in bold 
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Figure 1. (Continued) 

by a fall and then a second rise continuing beyond age 30. The S curves (Figure 1 (c)) demonstrate 
that the coefficient of variation is raised during the early peak in triceps skinfold, and that it falls 
briefly before rising steeply during puberty. 

Figures 2(a) and 2(b) show seven centiles, from the 3rd to the 97th, for triceps skinfold in 
Gambian females, obtained from the LMS curves using equation (4). In Figure 2(a) the curves 
each have 9 e.d.f., while in Figure 2 (b) they have 12. Figure 2 (a) is reasonably well smoothed over 
the whole age range, whereas in Figure 2(b) the centiles beyond age 20 are somewhat ragged. 
However, the corresponding centiles during childhood are convincingly smooth, showing that the 
extent of smoothing is greater for the children than the adults. 

Figure 3 illustrates the empirical relationship between a and e.d.f. for the Gambian triceps 
skinfold data. The L, M and S curves are fitted in turn with e.d.f. of between 2 and 15, and the e.d.f. 
are then plotted against the corresponding values of a (7). On log-log axes the plots are close to 
linear and parallel, particularly for e.d.f. > 4. This same pattern is also found with other data (not 
shown), confirming the empirical relationship tl = C e.d.f.k, where k usually lies between - 4 
and - 6. 

Figures 4 (aHc) show the fitted L, M and S curves for U.S. girls’ weight between 1 and 21 years, 
obtained by setting the e.d.f. to 7, 10 and 7, respectively. The S curve (Figure 4(c)) shows that the 
CV of weight increases until 12 years, the age of peak weight velocity, and then declines again, 
while the L curve (Figure 4(a)) demonstrates a slightly earlier period during puberty when the 
skewness of the weight distribution falls and then rises again, which is due to heterogeneity in the 
timing of the pubertal growth spurt8 Figure 5 gives the corresponding set of seven centile curves, 
from the 3rd to the 97th, obtained from Figures 4(a)-(c). 
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Figure 2. Seven centiles of triceps skinfold in Gambian females from birth to age 50 years, based on the LMS curves 
in Figure 1 

(a) With 9 equivalent degrees of freedom (b) With 12 equivalent degrees of freedom 
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Figure 3. Plots of the smoothing parameter a versus the corresponding equivalent degrees of freedom (e.d.f.) for the LMS 
curves in Figure 1 ,  for e.d.f. from 2 to 15 
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Figure 4. Weight in U.S. girls from age 1 to 21 years 
(a) B o x C o x  power ( L )  fitted by a spline curve with 7 equivalent degrees of freedom 
(b) Median (M) fitted by a spline curve with 10 equivalent degrees of freedom 
(c) Coefficient of variation (S)  fitted by a spline curve with 7 equivalent degrees of freedom 
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Figure 5. Seven centiles of weight in US. girls from age 1 to 21 years, based on the LMS curves in Figure 4 

An important requirement of fitting centile curves is that they be properly calibrated, meaning 
that appropriate proportions of the sample fall between adjacent centiles at different ages. This is 
best done by expressing each measurement as an SD score (3), and if the fit is adequate they 
should be distributed as N(0, 1) throughout the age range. 

Based on the LMS curves of Figures 4 (a)gc)  and (3), the mean SD score for U.S. girls’ weight is 
0901 (SD 1.001). The distribution of SD scores is shown in Figure 6 using the model-free method 
of Healy;’ seven empirical centile curves for SD score by age are derived by scatterplot smoothing 
using a bandwidth of 5 per cent. On the assumption of normality the expected centile curves are 
horizontal straight lines, which are also shown in Figure 6. It is clear that apart from random 
error the observed centiles are close to the expected values, with no systematic trends, and that the 
distribution is reasonably normal throughout the age range. 

DISCUSSION 

Fitting smooth centile curves has always been something of a subjective exercise, or even a black 
art.’ The difficulty lies in deciding whether a bump or dip observed on a centile curve at  a 
particular age is a real feature of the data, or whether it is simply sampling error. The LMS 
method as originally described went some way towards avoiding this problem, in that shapes of 
the centiles are determined by three essentially uncorrelated curves, the L, M and S curves. The 
first defines the skewness of the distribution at  each age, the second the median and the third the 
coefficient of variation. Thus if a bump shows itself on the median curve, just one decision has to 
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Figure 6. Seven observed and expected centiles of U.S. girls' weight SD scores, obtained from the standard of Figure 5. 
The observed centiles are derived by the scatterplot smoothing method of Healy et d.,' using a bandwidth of 200 points 

(5 per cent) 

be made about its importance, whereas with seven centile curves, each being smoothed independ- 
ently, the same decision has to be made repeatedly. 

The examples shown here demonstrate that the distributions of Gambian triceps skinfold and 
U.S. body weight are both skew, with values of the Box-Cox power on the L curve falling well 
below zero (considerably more skew than a log transformation), and more importantly, that they 
vary appreciably with age. The S curve also provides useful information about the changing 
coefficient of variation across the age range. 

The current paper describes an improved approach to the LMS method, which removes one 
arbitrary element from the fitting process and focuses on the smoothing. As originally described 
the method involved splitting the data into age groups, estimating L, M and S for each group 
separately, and then smoothing the group values across age. The choice of age cut-offs between 
groups was arbitrary, and in theory could have influenced the final result. In addition, the value 
for the power L read off the smoothed curve was not the value used to calculate the M and S 
values at the same age, so that the process did not iterate to convergence. Green3 highlighted the 
problem, and pointed out that penalized likelihood could solve it. 

In practice penalized likelihood provides an elegant solution - the smoothing of the three 
curves becomes an integral part of the likelihood maximization, with the roughness penalties 
incorporated with the likelihood (6). No age cut-offs need be specified, and the L, M and S values 
at each age are used in turn to calculate the other two parameters. Thus the only arbitrariness in 
the whole procedure is the choice of the three smoothing parameters a. 
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Even this arbitrariness could be reduced by developing a formal inference procedure for 
assessing goodness of fit. Hastie and Tib~hirani '~ and Yandell and Green16 have discussed 
inference in other non-parametric regression models using methods analogous to the F test. It 
would be possible to assess goodness of fit here by regarding twice the increase in log-likelihood 
for each unit increase in e.d.f. as x' distributed, but there is no mathematical justification for this. 

The benefit of the LMS method is shown by the second example. This dataset was also used by 
Cole (Reference 8; Figures 2-5), and the comparison of the curves fitted by age group, as there, 
and as fitted here is instructive. The main differences between the two sets of curves are minor 
edge effects in the L and S curves, but overall it is reassuring that the relatively crude method used 
by Cole* does not seriously distort the underlying distribution. An advantage of the penalized 
likelihood approach is that it avoids identifying individual age groups as good fits or outliers, and 
instead treats the entire dataset as a single entity. 

The examples illustrate two practical problems of the method, which are quite general and 
likely to affect all smoothing techniques. The first is the presence of edge effects - in both 
examples, but particularly the Gambian women, the LMS curves turn up sharply at the top end of 
the age range, due to the relatively small numbers at this age. The second concern is the non- 
uniform smoothing seen in Figures 2 (a) and 2 (b), where the adults are less well smoothed than the 
children, due to the relatively small proportion of adults (30 per cent) in the sample. Both 
problems are ones of sampling - the age distribution should be essentially uniform throughout 
the age range, but perhaps with increased density at the extremes to minimise edge effects, or at 
other ages where the LMS curves change rapidly.' 

The ability to express the smoothing parameters in terms of equivalent degrees of freedomi4 is 
a powerful feature of the method, as the u are in unfamiliar units and suitable default values are by 
no means obvious. Working with e.d.f. allows the required smoothness to be specified at the 
outset, and a given e.d.f. implies the same smoothness whatever dataset it is applied to. The 
smallest possible e.d.f. is 2, corresponding to a straight line. In this limiting case, the spline curve is 
the same shape as the polynomial with the same degrees of freedom. From Figures 1 (aHc) it is 
clear that a curve with 3 e.d.f. is similar to a quadratic, but as the e.d.f. increase the corresponding 
families of spline curves and polynomials become increasingly different. This emphasizes the 
benefit of using splines rather than polynomials - the possible range of shapes that can be fitted is 
much greater. 

The essential linearity of the relationship between log e.d.f. and log u, illustrated in Figure 3, is 
useful for streamlining the iteration process. The exact relationship between e.d.f. and ct (7) is 
complex, non-linear and data-dependent, so that the empirical linearity between them, given by 
u = C edfk, is a bonus for the fitting process. An initial choice of a leads to its corresponding e.d.f., 
which estimates C in the equation. This can then be used to extrapolate to the required e.d.f. 

A useful feature of the spline curves in the LMS method is that they can be used either to 
smooth the data or to investigate underlying structure. Sufficient has been said about the first 
application, but Figure 1 (a) provides an illustration of the second. The trough in the L curve 
during puberty is steep and narrow when fitted with 12 or 15 e.d.f., but as the e.d.f. are reduced so 
the trough becomes wider and shallower. The benefit of fitting the curve with 15 e.d.f. is that the 
underlying shape of the L curve is clearly seen. Apart from the trough, the curve is essentially 
constant throughout adulthood, except for the rise at age 50. 

This illustrates a second feature of spline curve fitting. Looking at Figure l(a), there is a 
temptation to model the L curve as a steep and narrow trough followed by a flat section. 
However, this would be an over-interpretation, as the later section only becomes flat by 
smoothing it, and this smoothing widens and flattens the trough at the same time. The spline 
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curve provides an objective measure of the amount of weight to be attached to different features of 
the curve, and balances between them. 

The U.S. girls’ body weight example shows that the e.d.f. required for the M curve are greater 
than for the L and S curves. This is not surprising, as in general the median of the distribution is 
much better specified than the coefficient of variation or the skewness. It might be thought that in 
turn, the coefficient of variation ought to be better specified than the skewness, but in practice the 
two curves require much the same degree of smoothing, as seen in Figures +a) and 4(c) where they 
both have 7 e.d.f. The Gambian skinfolds by contrast use the same e.d.f. for all three curves, but 
this is somewhat different owing to the wider age range. 

In conclusion, the LMS method fitted by penalized likelihood provides a convenient ‘black 
box’ for the fitting of smooth reference centile curves. It also highlights features of the underlying 
distribution as the covariate changes, and provides an objective tool to determine their relative 
importance. 

APPENDIX 

To deal with possible ties in the {ti}, let {Tj}  be the m distinct ordered values of the {t i} .  The 
vectors of values of L (0, M (0 and S (0 for the current iteration are then represented by I, p and 
a. It can be shown that the corresponding value of J {L”(7)}2dTis given by ATKI, and similarly 
for p and a, where K is an m x m square matrix dependent only on the { Tj).13 

Given I, p and t~ at the current iteration, an improved set of estimates is derived by Fisher 
scoring. The updated estimates I*,  p* and t ~ *  are solutions to the scoring equations: 

W , + @ , K  WA, UA - uAKI 
w,,, w,, + %K (8) 

We, We + UeK 

where 

W, = - E* (g) = diag (r> 
We = - E (s) = diag (-$) 

WL,, = - E ($$) = diag (2) 
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W - - - E (:A:T) - = diag (20) 

a v  
w,, = - E (u) = diag ($). 

Note that the i suffices for y and z,  and the j suffices for I, p and a, have been dropped. Each of the 
final expressions above is interpreted in the following way: thejth element of each u vector and the 
(j, j)th element of each W matrix is the sum over those observations {i} whose {ti> equals Tp 
Derivatives of the penalized log-likelihood with respect to I do not have finite expectations, so 
just the first three terms of a Taylor expansion of log ( y / p )  are used to define the operator E* 
for W,. 

To solve these updating equations, it is convenient to eliminate pairs of A*, p* and a* in turn, 
giving 

E.* = ( W ,  + a ,K) - ’  {ul + W,A - (p* - p) W,, - (a* - a) W,,} 
p* = (W, + a,K)-’{u, + W,p - (a* - a) W,, - (A* - I) W,,} 
CJ* = (W, + ~ ,K) - ’ {u ,  + W,a - (A* - A) W,, - (p* - p) W,,,}. (9) 

But the operation of computing ( W + a K ) -  ’ Wy from y is precisely that of fitting a cubic spline to 
pseudo-data y. Thus the updating equations (8) are solved by an inner iteration cycling around 
the three expressions in (9), applying Reinsch’s algorithm13 to re-estimate each of the curves in 
turn. Once this process stabilizes, A, p and a are replaced by A*, p* and o*, the u and W are 
recalculated (8) and the process repeats. 
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