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SnapShot: Mitochondrial Quality Control
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Functions of “Healthy” Mitochondria

The emergence of the symbiotic relationship between a-purple bacteria and what was to become the eukaryotic cell made possible the origins of multicellular life through the
many functions of mitochondria. In animal cells, healthy mitochondria are the major source of NADH and ATP via the tricarboxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS). Mitochondria also produce intermediates for lipids and pyrimidine nucleotides and generate Fe-S centers, which in addition to being components of the electron
transport chain (ETC) are important elements of many proteins, including DNA repair proteins.

Mitochondria are essential for the major pathway of apoptosis, in which mitochondrial outer-membrane permeabilization (MOMP) allows the release of proteins that interact
with cytosolic proteins to trigger apoptosis. We have shown this as a function of healthy mitochondria to stress that this function is not a consequence of accumulated mitochon-
drial damage per se but, rather, a specific consequence of interactions among the BCL-2 family proteins, as reviewed (Green, 2011). Though damaged (“sick”) mitochondria can
function in apoptosis, it nevertheless proceeds via BCL-2 protein interactions. Healthy mitochondria also serve as platforms for the response to viral DNA by RIG-I and other
sensing proteins, which interact with the outer-membrane protein MAVS. A number of processes sustain healthy mitochondria in the cell.

Low-Level Ca?* “Pulses” from the Endoplasmic Reticulum

Constitutive pulses of Ca? from the endoplasmic reticulum (ER) IP3 receptor are taken up by mitochondria, and this low level of calcium sustains the activity of the TCA cycle
and the ETC. Without these Ca?* pulses, the decline in energy production leads to activation of AMPK and autophagy (Cardenas et al., 2010).

Mitochondrial Dynamics

Mitochondrial fission and fusion sustains healthy mitochondria by effectively mixing mitochondrial components (fusion) and, when combined with biogenesis, “budding” off new
mitochondria (fission) (Westermann, 2010). Fission may also allow damaged regions of a mitochondrion to be isolated for removal by mitophagy (see below). Fission in mammals
is mediated by the action of DRP1, which is recruited to mitochondria by MFF. When DRP1 is recruited, its GTPase activity promotes fission. Fusion in mammals is mediated by
mitofusin (MTF)-1 and MTF2 on the OMM and OPA-1 on the IMM. Studies in yeast suggest that additional players are required for both fission and fusion. Fusion requires the
potential across the inner membrane (A¥m) to be intact, whereas fission does not; if A¥m dissipates, fission dominates.

Mitophagy

Mitophagy is a process wherein the autophagy machinery creates double-membrane vesicles around damaged mitochondria, and these vesicles fuse with lysosomes to destroy
the organelles (Youle and Narendra, 2011). Mitophagy is triggered by the loss of A¥Ym. One of several mechanisms for mitophagy involves the kinase PINK1, which is constitutively
imported into the mitochondria, where it is degraded. Upon loss of A¥m, PINK1 accumulates on the OMM and activates the ubiquitin ligase, PARKIN. The activity of PARKIN
recruits the autophagy machinery to remove the damaged mitochondrion.

Mitochondrial Biogenesis and Repair

MtDNA is maintained, transcribed, and replicated by enzymes encoded in the nucleus. These proteins are imported by the Tom/Tim/Pam complex and the A¥m. The mitochon-
drial genome encodes subunits of complexes |, lIl, IV, and V. Oxidative mtDNA damage, a by-product of OXPHOS, is repaired through a process called base excision repair (BER).
Loss of several key BER enzymes in the mitochondria, including DNA ligase Ill, APE1, and ExoG, is incompatible with cell growth (Simsek et al., 2011). Several other key nuclear
DNA repair systems, such as nucleotide excision repair, are absent in mitochondria. It is unclear how mitochondria deal with damage from environmental insults such as UV light.
Oxidized proteins are destroyed by the ClpXP and LonP proteases in the matrix.

Effects of “Sick” Mitochondria

A failure in any of the above processes can promote mitochondrial dysfunction and the accumulation of damaged mitochondria and cellular dysfunction. In addition, environmen-
tal contaminants, ischemia/reperfusion injury, and other disease conditions engage two major processes that can overwhelm the reparative mechanisms. Sick mitochondria lose
A¥Ym and, as a consequence, not only fail to provide energy and biosynthetic products for the cell, but also act as an energy drain due to reversal of complex V to hydrolyze ATP.
One result is the production of AMP, which activates AMPK kinase that, in turn, induces autophagy, both as a consequence of inhibiting TORC1, but also by directly activating the
autophagic preinitiation complex. The energy drain and ROS-induced damage can also result in necrotic death of the cell. ROS can promote the formation of the NALP3 inflam-
masome, a molecular complex that activates caspase-1, which processes inflammatory cytokines and promotes their secretion. Mitochondria that undergo MPT can release
mitochondrial DNA, which engages the DNA sensors involved in antiviral immunity. As a consequence of these events, inflammation ensues, which is further exacerbated by
necrotic death (Green, et al., 2011).

Reactive Oxygen Species

During OXPHOS, molecular oxygen is reduced to water at complex IV. However, superoxide anion radicals (O,:) can be generated primarily at complexes | and Ill, with a majority
produced in the matrix. These reactive oxygen species (ROS) can cause cellular damage, including nuclear DNA and membrane lipids with pathophysiological consequences.
mtDNA is much more susceptible to hydrogen peroxide-induced damage, as compared to the nuclear DNA, due to high iron stores in the mitochondria. Protracted bouts of
oxidant injury induce persistent DNA damage causing mitochondria dysfunction. Aging, cancer, cardiovascular disease, diabetes, drug toxicity, ischemia/reperfusion injury, liver
disease, and neurodegeneration have been linked to this damaging process (Van Houten et al., 2006). In addition, low levels of ROS, produced by the ETC, are necessary for
some signaling events in the cell through mechanisms that remain to be elucidated (Hamanaka and Chandel, 2010).

Mitochondrial Permeability Transition

High levels of calcium, such as those that occur in ischemia/reperfusion injury, as well as high levels of ROS can trigger the so-called mitochondrial permeability transition (MPT),
in which cyclophilin D (cypD) is activated. CypD is a cis-trans peptidyl proline isomerase that causes conformational changes in proteins of the IMM. The activity of CypD opens
“pores” in the IMM, making it permeable to small (<1.5 kDa) solutes that enter the matrix. As a consequence of MPT, A¥Ym dissipates (losing all A¥Ym-dependent functions), and
water swells the matrix. Swelling can burst the IMM and the OMM, releasing mitochondrial components, including mtDNA, to the cytosol. Mice lacking CypD show resistance to
some forms of ischemia/reperfusion injury but display no defects in apoptosis (Leung and Halestrap, 2008).
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