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SUMMARY

The transcription of genomic information in eukary-
otes is regulated in large part by chromatin. How a
diverse array of chromatin regulator (CR) proteins
with different functions and genomic localization pat-
terns coordinates chromatin activity to control tran-
scription remains unclear. Here, we take a synthetic
biology approach to decipher the complexity of chro-
matin regulation by studying emergent transcrip-
tional behaviors from engineered combinatorial,
spatial, and temporal patterns of individual CRs. We
fuse 223 yeast CRs to programmable zinc finger pro-
teins. Site-specific and combinatorial recruitment of
CRs to distinct intralocus locations reveals a range
of transcriptional logic and behaviors, including syn-
ergistic activation, long-range and spatial regulation,
andgeneexpressionmemory. Comparing these tran-
scriptional behaviors with annotated CR complex
and function terms provides design principles for
the engineering of transcriptional regulation. This
workpresents abottom-up approach to investigating
chromatin-mediated transcriptional regulation and
introduces chromatin-based components and sys-
tems for synthetic biology and cellular engineering.
INTRODUCTION

Eukaryotic genomes are packaged into chromatin, a higher-

order structure of DNA, histones, and associated proteins. A

diverse array of chromatin regulators (CRs) form complexes

that act on and modify chromatin in unique combinatorial,

spatial, and temporal patterns, thereby regulating how the un-

derlying genomic information is transcribed and vastly extending

the information potential of the genome (Figure 1) (Li et al., 2007;

Narlikar et al., 2002; Ram et al., 2011). Yet, despite being the

subject of extensive studies, the relationships between CRs

and gene regulation remain unclear.
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There are a number of hypothesized mechanisms by which

CRs modulate and control gene transcription. First, at each

gene, chromatin can be combinatorially regulated by numerous

CR proteins with different functions (Li et al., 2007; Ram et al.,

2011; Venters et al., 2011). Thus, processes ranging from

forming and recruiting preinitiation complexes, remodeling and

assembling nucleosomes, increasing chromatin accessibility

through histone modifications, and promoting transcriptional

elongation may act in concert to generate a wide range of

transcriptional outputs and logic (Lam et al., 2008; Mirny, 2010;

Narlikar et al., 2002).

Relatedly, histone tails have numerous residues that can be

decorated by a wide assortment of biochemical modifications.

Genome-wide and gene expression profiling studies have corre-

lated specific combinations of modifications (Liu et al., 2005;

Zhou et al., 2011) and associated CRs (Ram et al., 2011; Venters

et al., 2011) with chromatin structure and gene expression state.

These findings have lent support to the ‘‘histone code’’ hypoth-

esis, which posits that specific combinations of histone tail

modifications serve to recruit proteins that establish or alter tran-

scriptional activity (Strahl and Allis, 2000). Uncovering the

distinction between the simple presence of and the causal tran-

scriptional function of chromatin marks (and CRs) remains an

active area of investigation (Henikoff and Shilatifard, 2011).

In addition to the combinatorial patterning of chromatin mod-

ifications, histones (Zhou et al., 2011) and CRs (Ram et al., 2011;

Venters et al., 2011) are found in distinct spatial patterns around

and throughout genes, raising the compelling possibility that

spatial organization underlies transcriptional control (Li et al.,

2007; Pokholok et al., 2005; Weinberger et al., 2012). Methods

for directly linking transcriptional function with the localization

of CRs within and around genes are needed to establish these

principles.

Finally, spatial changes in chromatin modifications, such

as spreading of DNA methylation and histone hypoacetylation

marks, are believed to give rise to stable epigenetic states

(Dodd et al., 2007; Hathaway et al., 2012). Identifying specific

CRs and conditions that drive these epigenetic changes is crit-

ical for understanding how gene expression memory is estab-

lished and how genes and loci are stably activated or repressed

during developmental or disease processes.
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Figure 1. A Synthetic Biology Approach to

Engineering Chromatin-Based Transcrip-

tional Regulation

Eukaryotic gene transcription is regulated by

diverse chromatin-regulating complexes and net-

works (top right). The complexes were decom-

posed into a library of subunit chromatin regulator

(CR) proteins (top left). These subunits were fused

to engineered zinc finger (ZF) proteins to enable

site-specific spatial and combinatorial targeting to

designed gene loci (bottom). This modular frame-

work allows the direct functional characterization

of individual CRs as transcriptional regulators

and for designing locus architectures that recruit

different combinations of CRs to explore and

engineer complex spatial and combinatorial tran-

scriptional regulation.
Understanding these regulatory principles requires systematic

approaches for investigating CR function, for example, to deter-

mine: (1) which CRs (or classes of CRs) can activate or repress

transcription, (2) what forms of transcriptional logic are obtained

from combinatorial regulation by multiple CRs at a single gene,

(3) how transcriptional regulatory information is encoded in the

spatial organization of CRs and genes, and (4) what potential

epigenetic properties are associated with CRs.

Current approaches to study chromatin function are largely

based on pharmacological and genetic perturbations combined

with genome-wide measurements of gene expression and chro-

matin state. These approaches have yielded fundamental in-

sights (Lenstra et al., 2011; Ram et al., 2011), but are limited in

their ability to directly test CR function because of global and

pleiotropic effects and context-dependent recruitment of CRs

to different genomic loci. Furthermore, correlative measure-

ments of chromatin structure and function make it difficult to

distinguish downstream from causative perturbations (Henikoff

and Shilatifard, 2011; Ptashne, 2013).

To address these limitations, synthetic biology approaches

may provide unique and complementary advantages, such as

the ability to decompose these complex systems into well-un-

derstood components and to directly test CR function through

site-specific perturbations. Moreover, with the recent advent of

programmable DNA-targeting platforms, CRs can be site-spe-

cifically recruited to defined genomic sequences, a feature that

has been exploited to develop ‘‘epigenome editing’’ tools for

altering DNAmethylation states and histonemodifications (Hath-

away et al., 2012; Konermann et al., 2013; Maeder et al., 2013a;

Mendenhall et al., 2013).

Here, we take a synthetic biology approach to study and

classify transcriptional behaviors emerging from engineered

combinatorial, spatial, and temporal patterns of targeted CRs.

Specifically, programmable zinc fingers (ZFs) are fused to a library

of 223 yeast CR proteins encompassing 45 known chromatin

complexes (Figure 1). First, this library is site-specifically targeted

to a minimal gene locus to identify factors that activate or repress

transcription. CRs are clustered by gene ontology annotations in
order to classify chromatin complexes and protein functions that

causatively regulate transcription. We then recruit CRs in combi-

nation with the VP16 transactivator to reveal different forms of

transcriptional logic. Spatially recruiting CRs in distinct patterns

and locations within single- and multigene loci identifies classes

of engineered CRs capable of regulation from (nonpromoter)

downstream positions, long-range transcriptional regulation,

and gene expression memory. Taken together, our work moti-

vates bottom-up experimental approaches for assigning CR

function and uncovering rules governing chromatin-based gene

regulation. This work also presents a class of regulatory compo-

nents, locus architectures, and design principles for synthetic

biology applications (Fischbach et al., 2013; Khalil and Collins,

2010; Purnick and Weiss, 2009; Weber and Fussenegger, 2010;

Ye et al., 2013).

RESULTS

Targeted Transcriptional Regulation at a Synthetic
Reporter Locus
We introduced a synthetic transcriptional reporter into the

Saccharomyces cerevisiae genome, in which expression of

yEGFP is controlled by a minimal CYC1 promoter harboring up-

stream, tandem operator sites recognized by an engineered ZF

protein (43-8, GAGTGAGGA) (Figure 2A, top) (Khalil et al.,

2012). pCYC1 (�183 TSS +66) was chosen for its intermediate

basal level of expression (Blount et al., 2012; Garı́ et al., 1997;

Khalil et al., 2012). The core CYC1 promoter has also been

used to identify both transcriptional repressors and activators

(Martens et al., 2001). Furthermore, the depletion of histone

H4 has been shown to activate the core promoter 94-fold, indi-

cating the importance of basal chromatin in its regulation

and thus its potential utility in this study (Han and Grunstein,

1988). Finally, this minimal promoter lacks endogenous

upstream regulatory sequences, including both the heme-

responsive activating sequence and the glucose-mediated

repression site (Guarente et al., 1984; Olesen et al., 1987),

thus reducing the effects of signaling crosstalk, noncoding
Cell 158, 110–120, July 3, 2014 ª2014 Elsevier Inc. 111



Figure 2. Identifying Transcriptional Regu-

lators by Direct Recruitment of a Library of

223 CRs

(A) Top: 223 CR proteins were fused to an en-

gineered ZF protein (or nontargeting ZF) and

placed under the control of an inducible GAL1

promoter. Each fusion protein was individually

recruited to operators placed upstream of a mini-

mal CYC1 promoter driving the expression of

GFP. NLS, nuclear localization signal. Bottom:

fold change in GFP expression induced by VP16

activation and Mig1 repression domains fused to

targeting or nontargeting ZF proteins.

(B) Fold change in GFP expression for the library

of 223 ZF-CR fusions (normalized to uninduced

levels). Repressors (blue bars) were classified

as having <0.7-fold change, while activators (red

bars) have >2-fold change.

(C) CRs grouped by complex and plotted ac-

cording to the percentage of activators and re-

pressors in each complex. Dot colors correspond

to the general activities of each complex. Error

bars are SD of three isogenic strains.

See also Figures S1 and S2.
RNAs, and endogenous recruitment of synthetic CRs. This re-

porter construct and others described below were genomically

integrated into the URA3 locus. We also integrated copies of

the reporter into the HIS3 and LEU2 loci to confirm that our re-

sults were similar in different genomic loci (see Figures S1, S3,

S5E, S5F, S7A, and S7D and Tables S1 and S4 available on-

line). In order to test the ability of this reporter to recruit regula-

tors and report on transcriptional activity, we fused canonical

transcriptional activating (VP16) and repressing (Mig1, aa481–

503) domains to the targeting ZF protein (43-8) as well as

to a nonspecific ZF (42-10, GACGCTGCT) (Khalil et al.,

2012). Expression of these fusion proteins was driven by a

small-molecule inducible version of the GAL1 promoter. Upon

expression, only the targeted factors activated or repressed

the locus (Figure 2A, bottom).
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Identifying Functional
Transcriptional Regulators from a
Library of Targeted CRs
A large body of work has identified

correlations between the expression of

specific CRs and global transcriptional

activity. However, it is often unclear

which CRs are causative of or merely

associated with changes in transcrip-

tional activity at specific loci. Therefore,

we fused a library of 223 full-length puta-

tive CRs, comprising 45 chromatin-regu-

lating complexes (Lenstra et al., 2011),

to the targeting ZF and individually tested

each protein’s ability to activate or

repress transcription from the pCYC1

reporter (Figure 2A, top). As shown in

Figure 2B, numerous repressors and acti-

vators were identified from the library,
spanning�20-fold changes in repression and activation (Figures

2B, S1A, and S1D; Table S1). We also observed expected

changes in histone modifications at the reporter locus,

measured by chromatin immunoprecipitation-quantitative PCR,

upon expression of 17 CRs chosen for their predicted histone

modifying catalytic domains/activities (Figure S2B). To confirm

the changes in reporter expression were not simply a product

of CR overexpression, we fused the 27 strongest repressors,

48 strongest activators, and all CRs with histone-modifying cat-

alytic domains to a truncated, nonbinding ZF protein. The vast

majority of these fusions generated negligible changes in yEGFP

expression (Figure S6B). Rsc3, Ldb7, Sum1, and Tod6 were ex-

ceptions, exhibiting changes in yEGFP levels regardless of

targeting, suggesting either ZF-independent recruitment to

the locus or global transcriptional regulation. We observed no



correlation between transcriptional activation and the level of CR

expression as measured by western blot (Figure S2C).

Clustering CRs by Chromatin Complex and Function
We next asked if the targeted library could identify relationships

between transcription and CR protein functions or complexes.

Using gene ontology annotations, we first clustered all CRs by

macromolecular complex (Table S2). Individual CRs were then

conservatively classified as activators (Figure 2B, red bars, >2-

fold change yEGFP) and repressors (blue bars, <0.7-fold change

yEGFP). This classification excluded all nontargeted CRs, aside

from the exceptions noted above (Figure S6B). When the per-

centage of activators in each chromatin complex was plotted

against the percentage of repressors (Figures 2C and S1B; Table

S2), we discovered a number of clear patterns. Histone acetyl-

transferase (blue dots), H3K4 methyltransferase (‘‘COMPASS/

Set1’’), and RNA PolII transcription-related complexes (red

dots) were mostly composed of activating CRs. Histone deace-

tylase complexes were primarily composed of repressive CRs

(pink dots). Nucleosome remodeling complexes trended weakly

toward having more activators than repressors (green dots).

When clustered by protein function terms (Figures S1C and

S2A; Table S2), groups associated with the transcriptional com-

plex (red dots), histone acetyltransferase (blue dot), and histone

methyltransferase (brown dots) terms contained primarily activa-

tors, while groups associated with chromatin binding (orange

dots) and histone deacetylase (pink dots) terms contained pri-

marily repressors. These results largely agree with the regulatory

roles assigned to various complexes and protein functions

through previous genome-wide and knockout/mutant strain

studies (Lenstra et al., 2011; Ram et al., 2011; Venters et al.,

2011).

Engineering Combinatorial Transcriptional Logic
Native genes are simultaneously regulated by multiple proteins

with different functions and activities, often giving rise to combi-

natorial transcriptional logic. Therefore, we next explored how

corecruitment of factors affects transcription. In particular, we

were interested in how different CRs modulate the activity of a

corecruited VP16 domain. We fused VP16 to a second, orthog-

onal ZF protein (97-4, TTATGGGAG) (Khalil et al., 2012), which

could be independently recruited to an operator placed directly

downstream of the ZF-CR operator (Figure 3A). As expected,

upon corecruitment of VP16 with the ZF-CR library, we found

that transcriptional outputs generally increased as compared

to recruitment of CRs alone (Table S3). The CRs divided into

six distinct classes of combinatorial regulators based on tran-

scriptional logic: CRs capable of (1) dominant (Sir2 and Mig1)

or (2) partial (Ash1 and Dot1) inhibition of VP16-mediated acti-

vation; CRs with no regulatory roles on their own and either (3)

no (Eaf7 and Rvb2) or (4) enhanced (Ies6 and Cdc73) effect on

VP16-mediated activation; finally, CRs that act (5) additively

(Taf14 and Med4) or (6) synergistically (Cac2 and Set1) with

VP16 to increase yEGFP expression (Figures 3B, S3A, and

S3B). Synergy is the ‘‘cooperation’’ of factors to produce a total

output and here it was defined as the fraction of total output in

excess of summing the outputs from the individual components

(Figures 3C, 3D, S3C, and S3D).
To develop insight into CR functions that may underlie these

different, combinatorial logic behaviors, we clustered CRs by

complex (Figures 3C and S3C) and function (Figures 3D and

S3D) and calculated the percentage of CRs in each cluster

with strong synergy. When clustered by complex, we found

that the majority of Mediator and TFIID subunits exhibited

weak synergy with VP16 (Figures 3C and S3C, purple bars). In

contrast, complexes that remodel and assemble chromatin

(Swr1, RSC, CAF-1), promote transcriptional elongation (Paf1),

or modify histones to open chromatin structure (NuA4, Set1)

were comprised primarily of CRs that synergistically enhanced

activation (Figures 3C and S3C, red bars).

We observed the same general trend when we clustered acti-

vating CRs by function, as opposed to complex (Figures 3D and

S3D; Table S4); that is, CRs related to transcription factor and

RNA PolII terms exhibited weak synergy with VP16 (purple),

while those associated with chromatin remodeling, modifying,

and binding exhibited strong synergy (red). VP16 is believed to

activate transcription by recruiting preinitiation and transcription

complex factors alongwith theMediator complex (Milbradt et al.,

2011). Thus, additive activation might occur through a cor-

ecruited CR that functions similarly to VP16 or is part of either

the transcription complex or Mediator. Importantly, we observed

a simple additive relationship when we corecruited two identical

VP16 domains (Figure 3C, ‘‘VP16’’). In contrast, other functions

such as remodeling nucleosomes, modifying histones to alter

chromatin accessibility, and promoting transcriptional elonga-

tion may synergistically amplify the output by increasing access

of transcriptional machinery to DNA (Lam et al., 2008; Mirny,

2010).

Revealing Spatially Encoded Regulatory Modes
While transcriptional regulation is canonically focused at pro-

moter regions, there is also considerable evidence for chro-

matin-mediated regulation at other locations relative to open

reading frames (ORFs): (1) nucleosomes are arrayed over entire

genes with distinct positioning at promoter and terminator re-

gions (Lam et al., 2008), (2) native CRs and transcription factors

are often localized to spatially specific, nonpromoter regions to

regulate genes (Groner et al., 2010), and (3) histone mark gradi-

ents have been observed over genes (Li et al., 2007; Pokholok

et al., 2005). These observations suggest that CRs may asym-

metrically and differentially regulate genes depending on their

relative location to an ORF.

We sought to explore spatially dependent regulatory behav-

iors using site-specific CR recruitment. We moved the ZF oper-

ators in the reporter locus from upstream of the coding sequence

to downstream of the terminator (Figures 4 and S4). The library of

ZF-CRs was then inducibly recruited to the downstream element

(Figure S4, blue and gold bars). No CRs were able to activate

transcription from the downstream position, suggesting the

importance of preinitiation/transcription complex assembly at

promoters for activation. However, many CRs were able to

repress transcription from the downstream position. Interest-

ingly, several of these CRs exhibited ‘‘asymmetric’’ regulatory

modes; in other words, they had opposite regulatory functions

when targeted upstream versus downstream (Figure S4, gray

bars). To develop insight into CR functions that may underlie
Cell 158, 110–120, July 3, 2014 ª2014 Elsevier Inc. 113



Figure 3. Combinatorial Recruitment Re-

veals Distinct Classes of Regulators for

Engineering Transcriptional Logic

(A) An engineered two-input system enabling the

corecruitment of CRs and VP16 transactivating

domain (ZF 43-8, gray; ZF 97-4, blue) (Khalil et al.,

2012).

(B) Representative transcriptional logic outputs

of the two-input system divide CRs into six

distinct classes (top to bottom): VP16-indepen-

dent dominant repressors, repressors, CRs with

no effect, VP16 enhancers, additive activators

(purple), and synergistic activators (red).

(C) Activating CRs clustered by complex and

plotted by level of transcriptional synergy. Tran-

scription/preinitiation complex regulators gener-

ated weak synergy, while chromatin assembly/

remodeling, chromatin-modifying, and transcrip-

tion-elongation regulators generated strong syn-

ergy. Synergy is the ‘‘cooperation’’ of factors to

produce a total output and here is defined as the

fraction of total output not accounted for by

summing the outputs from the individual compo-

nents. Synergy = [(A – 1) – (B – 1) – (C – 1)]/(A – 1)

where A = CR and VP16, B = CR only, and C =

VP16 only.

(D) Activators clustered by gene ontology function

terms and plotted as percentage of CRs in each

term group with ‘‘strong synergy’’ (greater than the

average synergy of 0.2). Error bars are SD of three

isogenic strains.

See also Figure S3.
these spatially encoded behaviors, we grouped CRs by their

spatial regulatory profile (i.e., upstream-activating or -repressive

and downstream-activating or -repressive) and obtained associ-

ated gene ontology function terms for each group (Figure 4;

Table S5). Subsets of these terms were unique to each grouping

(Figure 4). Interestingly, while many upstream-activating/down-

stream-neutral CRs were associated with regulation of the

transcriptional complex, factors that were upstream-activating/

downstream-repressive appeared enriched in ATPase remodel-

ing and DNA translocase activity. This suggests that remodeling

activities can influence transcription from both ends of a gene,

potentially by increasing RNA PolII accessibility at upstream

regions while disrupting transcriptional elongation at down-

stream regions.
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Simultaneous and Differential
Regulation of Multiple Genes
The spatial qualities of chromatin-based

regulation could be exploited to engineer

the simultaneous regulation of multiple

genes. For example, based upon the

comparison of upstream versus down-

stream targeting of the CR library (Fig-

ure 4), a single CR might simultaneously

(and differentially) regulate two genes

if recruited upstream of one ORF and

downstream of another. To identify CRs

capable of such simultaneous regulation,
we constructed a dual-gene reporter system (Figure 5A) and

recruited a small subset of ZF-CRs to it. The CRs exhibited a

variety of dual-gene regulation profiles (Figures 5A, S5A, and

S5E). Notably, these included factors that could activate expres-

sion of one reporter gene while repressing the other. To confirm

that the local contexts of the genes were not responsible for

the observed behaviors, the ZF operators were swapped

between upstream and downstream positions at both genes

(Figures 5B, S5B, and S5F). As expected, the regulatory profiles

were correspondingly inverted. Moreover, fusions of CRs to

nonbinding ZFs did not appreciably modulate transcription,

strongly suggesting that these engineered regulatory modes

are the result of site-specific targeting (Figures S5A, S5B, S5E,

and S5F, left).



Figure 4. Engineering Spatial Regulation by

Targeting CRs Upstream and Downstream

of a Gene

A gene locus was engineered to recruit 223 CR

fusions to operators either upstream or down-

stream (downstream of a CYC1 terminator) of a

reporter gene. CRs were grouped according to

their upstream- and downstream-targeted regu-

latory profiles. Gene ontology function terms

unique to each group are listed along with the

number of CRs in the group associated with each

term.

See also Figure S4.
To test if we could shift the dynamic ranges of both reporter

genes while qualitatively maintaining the same dual-gene regula-

tory profiles, we corecruited VP16 to upstream positions in

the dual-gene architecture (Figure S5, right columns). We were

able to engineer increased dynamic ranges of both reporter

genes while maintaining similar regulatory trends of the CRs.

Because future applications may require the simultaneous regu-

lation of two distinct promoters, we next added a second,

different promoter to the reporter construct. Specifically, we re-

placed the downstream CYC1 promoter that drives the expres-

sion of mCherry with the full-length BIO2 promoter, which has

a similar intermediate basal level of expression as theCYC1 pro-

moter (Figures 5C, S5C, and S5D) (Blount et al., 2012). Overall,

we found that the regulatory output profiles were consistent

with those from the reporter harboring two repeated CYC1 pro-

moters, suggesting conservation in these forms of regulation.

Long-Range and Multigene Regulation
Our results support the notion that spatial location and

patterning of CRs influence regulatory function. To further

explore spatial effects, we next asked if CRs could regulate

genes from longer distances. Heterochromatic structures are

known to spread over large regions of the genome through hy-
Cell 158, 110
pothesized self-reinforcing mechanisms

(Bi et al., 2004; Dodd et al., 2007; Hath-

away et al., 2012). We sought to harness

this potential by constructing a three-co-

lor reporter system that could be used

to identify factors capable of long-range

transcription control (Figure 6A). We re-

cruited a set of the strongest repressors

and activators upstream of the first gene

(Figures 6, S6C, and S7A). Most CRs

modulated expression of only the prox-

imal gene (yEGFP) without affecting

downstream genes (Figure 6B), while

nontargeting controls did not affect

expression of any of the reporter genes

(Figures 6B, S6B, and S7A). However,

two CRs (Sir2 and Rph1) were able to

robustly repress all three genes in the

cluster. Intriguingly, Sum1 also showed

evidence for multigene regulation but
through a distinctive spatial pattern, in which repression was

strongest for the most distal gene and weakest for the proximal

gene. Yet, it should be noted that Sum1 was also unique in that it

showed some (weak) repressive abilities in an inverted spatial

pattern (strongest repression for the proximal gene and weakest

for the distal gene) when fused to a nontargeting ZF (Figures 6B

and S7A).

Long-range regulation and epigenetic memory are both hy-

pothesized to rely on self-reinforcing mechanisms that enable

spreading of chromatinmodifications fromnucleosome to nucle-

osome (Dodd et al., 2007). To explore the engineering of memory

via our targeted CRs, we chose three representative regulators

(Med16, Isw2, Sir2) and tested their ability to sustain gene

expression changes. We performed induction/wash-out experi-

ments for these CRs and measured reporter output over time.

While outputs for the activator Med16 and repressor Isw2 re-

turned to basal levels post washout, Sir2 was able to stably

repress the proximal gene (yEGFP) for 24 hr post washout (Fig-

ure 7A). Interestingly, the reactivation rate of the downstream

genes appeared to correlate with distance from the position of

CR binding. To test for the possibility that ZF-Sir2 was long-lived

and still present post washout, wemeasured ZF-Sir2 occupancy

at its operator, H4K16 acetylation levels at the yEGFP promoter,
–120, July 3, 2014 ª2014 Elsevier Inc. 115



Figure 5. Simultaneous and Distinct Regulation of Two Genes by

Individual CRs

(A) Top: schematic of the engineered, dual-gene reporter locus (CYC1

promoters and terminators used throughout). Bottom: fold change in GFP

(green bars) and mCherry (red bars) expression for six targeted CR fusions.

(B) Swapping operator locations results in inversion of transcriptional outputs.

(C) Schematic of the same locus architecture as in (A) but containing two

different promoters and terminators (BIO2 promoter and ADH1 terminator in

purple). Error bars are SD of three isogenic strains.

See also Figure S5.
and yEGFP expression at several time points (Figures S7B and

S7C). At 12 hr post washout, we observed ZF-Sir2 occupancy

had returned to preinduction levels while yEGFP expression

and H4K16 acetylation remained repressed for several cell

divisions (between 24–30 hr), suggesting heritable reporter

repression and histone modification.

DNA sequences have been identified that block heterochro-

matin spreading by disfavoring nucleosome-binding through

DNA conformation preferences and binding thermodynamics

(Bi et al., 2004; Raveh-Sadka et al., 2012). These include a

stretch of 100 deoxythymidines, a mix of 100 deoxythymidines
116 Cell 158, 110–120, July 3, 2014 ª2014 Elsevier Inc.
and deoxyadenines, and 32 repeats of CCGNN (where N is any

deoxynucleotide). We asked if these sequence elements could

be inserted into our triple reporter locus to insulate specific

genes from long-range repression by Sir2, Rph1, and Sum1 (Fig-

ure 7B). We found that only CCGNN repeats were able to fully

block repression (Figures 7C and S7D). Moreover, they could

relieve repression of the proximal downstream gene (mCherry),

but not the distal downstream gene (BFP). Similar effects were

observed with Rph1 and Sum1. Thus (CCGNN)32 could be

used to insulate genes, even those in themiddle of an expression

cassette, from the effects of long-range repressors (Figure 7D).

DISCUSSION

Hundreds of CR proteins act on chromatin in complex and

combinatorial ways to regulate gene transcription. Here, we

took a synthetic biology approach to study and classify tran-

scriptional behaviors emerging from engineered combinatorial,

spatial, and temporal patterns of CRs. Our results provide us

with components that can be used in synthetic biology and chro-

matin biology: (1) functional activators and repressors; (2) six

classes of combinatorial regulators for programming multi-input

logic: dominant repressors, repressors, neutral factors, VP16

enhancers, additive activators, and synergistic activators; (3)

distinct classes of spatially encoded regulators (e.g., ‘‘asym-

metric’’ regulators), including CRs that can repress transcription

from a downstream position; and (4) CRs capable of regulating

only proximal genes, as well as CRs capable of regulating

all genes simultaneously (long-range regulators), which in one

case also produced robust gene expression memory.

New Parts for Synthetic Biology and Cellular
Engineering
Synthetic biology offers a bottom-up approach for exploring the

design and function of biological systems and for engineering

cells and organisms to address a range of biomedical and indus-

trial applications (Fischbach et al., 2013; Khalil and Collins, 2010;

Purnick and Weiss, 2009; Weber and Fussenegger, 2010; Ye

et al., 2013). Here, we decomposed chromatin-based transcrip-

tional regulation into minimal components—minimal promoters

and individually targeted CRs—to provide a useful framework

of parts and behaviors for broad applications in synthetic biology

and cellular engineering.

Targeted CRs could be used as synthetic transcriptional

activators and repressors in eukaryotic organisms. Many

CRs matched or exceeded the activation or repression levels

achieved by commonly used regulatory domains, such as

VP16 and Mig1 (Figures 2A and 2B). While the behavior of any

individual CR may vary for different genomic contexts, the gen-

eral regulatory properties revealed by this library-based

approach will streamline selection and testing of relevant CRs.

Moreover, we observed strong correlation between the relative

activities of CRs in alternative loci (Figures S1, S3, S5E, S5F,

S7A, and S7D; Tables S1 and S4), suggesting some conserva-

tion or robustness in the function of these factors across different

genomic contexts.

This work also has interesting implications for the design

of synthetic gene circuits. First, our work demonstrates that



Figure 6. Long-Range and Multigene Regu-

lation by Targeted CRs

(A) Schematic of the engineered, multigene re-

porter locus. The 27 strongest repressors and 48

strongest activators identified from the full ZF-CR

library as well as all CRs with histone-modifying

catalytic domains were targeted upstream of the

first gene.

(B) Heat map of the fold change in fluorescence for

GFP, mCherry, and BFP, revealing classes of CRs

that regulate only the proximal gene (left and

middle) or that repress all three genes in the locus

(right).

See also Figure S6.
chromatin-based components can vastly extend the regulatory

potential of an individual genetic locus, thus expanding the

regulatory possibilities of circuit nodes. A diverse range of tran-

scriptional logic can be programmed by designing a genetic

locus to recruit different combinations of CRs. As a result, cir-

cuits composed of CRs may represent a more efficient solution

to information processing than those composed of canonical

transcriptional components, like bacterial transcription factors.

In other words, a minimal number of CRs targeted to a single

locus may perform similar logical or computational tasks as a

network composed of many interacting transcription factors.

This feature could be useful for biotechnology applications by

helping to reduce the size of gene expression cassettes to be

delivered into a cellular host. Yields from bioprocesses could

also be increased by the reduction in metabolic load on produc-

tion organisms. Second, quantitative control of transcriptional

outputs, including the ability to program synergistic activation,

could be useful in controlling the expression levels of enzymes

in engineered metabolic pathways and of regulatory proteins

in synthetic circuits. Chromatin-based control schemes could

be used to tune the sensitivity of cellular sensors to multiple

environmental factors, or to tune the expression range of

signaling factors such as chimeric antigen receptors in T cell

adoptive immunotherapy. The properties of synthetic circuits

such as induction threshold, cycle period, and entrainment

strength are known to be sensitive to expression levels (Atkin-

son et al., 2003), which could in principle be tuned through

corecruitment of synergistic CRs. Third, epigenetic regulation

of specific sets of genomic loci fundamentally underlies the

transition between distinct cellular states, including in response

to stress (Crews et al., 2012) or differentiation into cells of

distinct tissue types (Meissner, 2010). The ability to establish

epigenetic states at defined loci may enable construction of

simplified synthetic systems to study the regulatory principles

governing these processes.

Chromatin-based systems also enable multigene regulation,

providing interesting new strategies for precisely addressing

individual genes within a locus. For example, an asymmetric

spatial regulator could be used to simultaneously repress one

gene while activating another, a property that could serve as

the foundation for new bistable genetic switches. Furthermore,

some of the components presented here (CRs, nucleosome-dis-

favoring sequences, etc.) may be used to mitigate undesired

context effects of placing genes and regulatory elements in prox-
imity to one another. Finally, long-range CR repressors could be

deployed to stably silence entire genomic regions, for example,

to inactivate a synthetic circuit or to regulate an entire secondary

metabolite production cassette. Quantitative measurement of

properties, such as the kinetics of activation or repression, dis-

tance-dependence of spatial regulators, and spreading kinetics

of long-range regulators, would greatly enhance the utility of CRs

for these purposes.

Finally, recent advances in programmable DNA targeting

technologies are providing new opportunities for inducing epige-

nomic alterations at any desired locus, for example, to correct

disease-associated epigenomic changes. ZFs, transcription

activator-like effector (TALE) repeat domains, and the recently

described CRISPR/Cas system (Cong et al., 2013; Jinek et al.,

2012) each provide unique benefits, and all are compatible

with the approach outlined here. For example, ZFs are highly

specific, small, and efficient for gene/DNA delivery applications

(Urnov et al., 2010). TALE proteins are easier to engineer, have

a larger targeting range, and have been shown to enable the

targeting of CR domains (Konermann et al., 2013; Mendenhall

et al., 2013). Lastly, the CRISPR/Cas system can be used to pro-

motemultiplex recruitment of effectors to numerous loci simulta-

neously (Cong et al., 2013; Maeder et al., 2013b; Perez-Pinera

et al., 2013).

Bottom-Up Approaches for Chromatin Biology
In addition to applications in cellular engineering, the bottom-up

approach presented here may complement current methods in

chromatin biology, by providing tools and approaches to directly

test the functional role of chromatin states in gene expression.

Most methods for testing causality employ perturbations that

globally affect activities of CRs (knock-down, overexpression,

and chemical inhibition) with potential pleiotropic effects. Thus,

these methods do not directly assess causal functional roles

for CRs at specific loci. By targeting CRs to specific gene loci,

we provide functional evidence supporting the causative roles

of certain chromatin complexes in regulating transcription,

including activation by H3K4 methyltransferases and histone

acetyltransferases, and repression by histone deacetylases.

This approach could, in principle, be used to study the effects

of DNA and histone modifications at specific endogenous

loci and could be applied to the study of chromatin regulation

in mammalian cells (Konermann et al., 2013; Maeder et al.,

2013a; Mendenhall et al., 2013).
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Figure 7. Epigenetic Repression and

Insulation

(A) Time courses of induction/wash-out experi-

ments for three CRs. CR fusions were expressed

at t = 0 hr by the addition of the small molecule

ATc, which was subsequently washed out at t =

12 hr (gray bars). Med16 and Isw2 show reversible

activation and repression of GFP, respectively.

Sir2 maintains full repressive memory of the

proximal gene and partial repressive memory of

the downstream gene.

(B) Nucleosome-disfavoring sequences inserted

between the GFP and mCherry genes as putative

barrier or insulator elements.

(C) Fold change in fluorescence for GFP, mCherry,

andBFP induced by targeting (top) or nontargeting

(bottom) multigene repressors (Sir2, Rph1, and

Sum1 fusions). The (CCGNN)32 sequence robustly

insulates only the middle gene (mCherry) from

repression by the CRs.

(D) Schematic of the multigene regulatory circuit.

Error bars are SD of three isogenic strains.

See also Figure S7.
An interesting result that emerged from our CR library screens

is that transcription can be repressed but not activated from

downstream of a gene. Furthermore, activators do not appear

to display the long-range properties that some repressors do, at

least not within the spatial contexts studied (CRs targeted to

enhancers may exhibit different properties [Mendenhall et al.,

2013]). This highlights an interesting ‘‘asymmetric’’ property of

transcriptional regulation by some CRs. Activation is generally

controlled at specific locations (e.g., promoters and enhancers),

while repressioncanbecontrolled throughout agenepresumably

though spreadingmechanisms or disrupting the synthesis of full-

length transcripts. Site-specific targeting of CRs could also be a

useful tool in elucidating the mechanisms underlying long-range

repression and spreading of chromatin modifications (Hathaway

et al., 2012; Moazed, 2011). In conjunction with chromatin modi-

ficationmappingandproteindomain knockouts, site-specific tar-

geting of CRs could provide additional insight into the domains

and protein activities required for heterochromatic spreading.

Targeting specific domains that comprise CRs may also

be useful in understanding the importance of protein-protein in-

teractions and protein complex recruitment in chromatin-based

regulation. In addition, use of minimal chromatin-modifying cat-

alytic domains could provide supporting evidence of a histone

code. In this study, we focused on targeting full-length proteins

because it enabled the use of gene ontology annotations
118 Cell 158, 110–120, July 3, 2014 ª2014 Elsevier Inc.
to garner insights into chromatin-based

transcriptional regulation, such as the

classification of distinct sets of combi-

natorial regulators in programming tran-

scriptional logic. We found that CRs

with distinct regulatory mechanisms

fromVP16were able to generate synergy.

This suggests a general design principle

in which protein complexes with distinct

functions may interact to produce emer-
gent properties and may be combined to execute myriad regula-

tory decisions. Future work may reveal many novel behaviors

arising from the large interaction space between two or more

chromatin complexes with distinct mechanisms of action.

The complexity of chromatin arises from the large number of

regulating complexes and their combinatorial and spatial modes

of action. We show here that decomposing chromatin regulation

intomodular elements benefits our understanding of the function

of individual components and complexes. Furthermore, diverse

combinatorial and spatiotemporal regulatory modes can be en-

coded within synthetic gene architectures and executed by the

site-specific recruitment of engineered chromatin regulators.

This bottom-up approach may be a useful platform for both un-

tangling and harnessing the complexities of chromatin control

over cellular behaviors.

EXPERIMENTAL PROCEDURES

Extended Experimental Procedures are available online.

Strains and Media

The background strain used for all experiments in this study was S. cerevisiae

YPH500 (a, ura3-52, lys2-801, ade2-101, trp1D63, his3D200, leu2D1) (Strata-

gene). Culturing and genetic transformation were done as previously

described (Khalil et al., 2012) using either the URA3, HIS3, or LEU2 genes as

selectable markers.



Plasmid Construction

Reporter plasmids were constructed from integrative plasmid pRS406 (Strata-

gene) by cloning ZF (43-8 and/or 97-4) binding sequences at various locations

within a previously described reporter construct (Khalil et al., 2012). ZF-CR and

VP16 fusion proteins were expressed from previously described TetR- or LacI-

regulated GAL1 promoters (Khalil et al., 2012). The ZF-CR expression con-

structs were cloned into single-integrating plasmid pNH603 (HIS3), and the

VP16 fusion expression constructs into single-integrating plasmid pNH605

(LEU2).

Our host strain was generated by genomically integrating into the back-

ground strain an expression cassette that constitutively expresses TetR,

LacI, and GEV (cloned into single-integrating plasmid pNH607 [HO]). Constitu-

tive expression of the repressors in glucose-containing media ensures low

basal levels of expression of ZF-CRs from the engineered GAL1 promoters,

which can be relieved by the respective addition of the chemical inputs, ATc

and IPTG, along with b-estradiol to the medium. The negative control, trun-

cated (nonbinding) ZF amino acid sequence is PRHLKTHLR. pNH603,

pNH605, pNH607, and BFP were kind gifts from the Lim Laboratory (Zalatan

et al., 2012).

Library Construction

Primer sequences were obtained from the SaccharomycesGenome Database

(SGD) (Cherry et al., 2012) (Table S6), synthesized (Integrated DNA Technolo-

gies), and used to amplify full length CR ORFs from wild-type yeast (BY4742).

SbfI and NotI flanking restriction sites were used to ligate PCR products C-ter-

minal to (3xFLAG)-(nuclear localization sequence)-(zinc finger array)-(17 amino

acid glycine-serine linker).

Induction Experiments

Three single yeast colonies for each strain were picked after genomic integra-

tion and used to inoculate 500 ml of SD-media (synthetic drop-out media con-

taining 2% glucose with defined amino acid mixtures) in Costar 96-well assay

blocks (V-bottom; 2 ml max volume; Fisher Scientific). The cultures were

grown at 30�C with 900 rpm shaking for 24–48 hr. Cultures, with and without

inducers, were inoculated in SD-complete media to an OD600 of 0.05–0.1

and grown at 30�C with 900 rpm shaking for 12 hr. Cells were treated with

10 mg/ml cycloheximide to inhibit protein synthesis and then assayed for

yEGFP, mCherry, and BFP expression by flow cytometry.

Flow Cytometry and Data Analysis

For all experiments, 5,000–10,000 events were acquired using a BD LSRFor-

tessa equipped with a High Throughput Sampler (BD Biosciences). Events

were gated by forward and side scatter, and geometric means of the fluores-

cence distributions were calculated in FlowJo. The autofluorescence value of

S. cerevisiae YPH500 cells harboring no genomic integrations was subtracted

from these values. ‘‘Fold activation’’ values were calculated as the ratio of fluo-

rescence values from induced cells to those from uninduced cells. All values

obtained were the means of three isogenic strains. BFP and mCherry expres-

sion, driven by the CHO1 and BIO2 promoters, respectively, remained largely

invariant between induced and uninduced cultures (Figure S6C); thus GFP

values are not expected to vary significantly with any growth rate differences

in strains.

Gene ontology queries were submitted to the SGD database between July

10, 2013 and August 17, 2013 (Cherry et al., 2012). Cluster and background

frequencies are in Tables S2, S4, and S5.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

tables, and seven figures and can be found with this article online at http://

dx.doi.org/10.1016/j.cell.2014.04.047.
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