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Summary

  This is a review of the current status of knowledge on adult stem cells as well as the criteria and ev-
idence for their potential to transform into different cell types and cell lineages. Reports on stem 
cell sources, focusing on tissues from adult subjects, were also investigated. Numerous reports have 
been published on the search for early markers of both stem cells and the precursors of various cell 
lineages. The question is still open about the characteristics of the primary stem cell. The existing 
proofs and hypotheses have not yielded fi nal solutions to this problem. From a practical point of 
view it is also crucial to fi nd a minimal set of markers determining the phenotypes of the precur-
sor cells of a particular cell lineage. Several lines of evidence seem to bring closer the day when 
we will be able to detect the right stem cell niche and successfully isolate precursor cells that are 
needed for the treatment of a particular disorder. Recent reports on cases of cancer in patients sub-
jected to stem cell therapy are yet another controversial issue looked into in this review, although 
the pros and cons emerging from the results of published studies still do not provide satisfying ev-
idence to fully understand this issue.

 key words: adult stem cells • cell differentiation • progenitor cells • self-renewal • stem cells • 
stem cell niche

 Full-text PDF: http://www.medscimonit.com/fulltxt.php?IDMAN=9063

 Word count: 5684
 Tables: —
 Figures: 2
 References: 122

 Author’s address: Aleksander L. Sieron, Department of General and Molecular Biology and Genetics, Medical University of Silesia in 
Katowice, ul. Medyków 18, 40-752 Katowice, Poland, e-mail: alsieron@slam.katowice.pl

Received: 2006.04.13
Accepted: 2006.06.08
Published: 2006.08.01

RA154

Review Article
WWW.MEDSCIMONIT.COM© Med Sci Monit, 2006; 12(8): RA154-163

PMID: 16865077

Current Contents/Clinical Medicine • SCI Expanded • ISI Alerting System • Index Medicus/MEDLINE • EMBASE/Excerpta Medica • Chemical Abstracts • Index Copernicus



BACKGROUND

Stem cells are classifi ed according to their differentiation po-
tential as totipotent, pluripotent, or multipotent. Totipotent 
stem cells are capable of forming any tissue in the body, sim-
ilarly to a fertilized egg which, following cleavage, produces 
cells which differentiate into all types of tissues. Pluripotency 
is the capability of the cell to create almost any type of cells 
in the organism, but not the entirety. Multipotent stem 
cells, fi nally, are those that can only give rise to cells of the 
tissue that they were isolated from. Cells in a developing 
embryo, totipotent at the beginning, lose this feature after 
several cell cycles as a completely developed organism and 
become pluripotent. Therefore, based on the criteria of dif-
ferentiation potential, embryonic stem cells are the least dif-
ferentiated when compared with bone marrow stem cells 
(BMSCs), tissue-specifi c stem cells, lineage-specifi c precur-
sors, and terminally differentiated cells. Besides embryon-
ic stem cells, bone marrow has been predominately con-
sidered the only signifi cant source of stem cells. However, 
recent fi ndings have revealed that adult stem cells can re-
side in most if not every tissue (vide [1]). The marrow and 
non-marrow stem cells display different characteristics and 
properties that will be discussed in this review.

There are some common features of adult stem cells that 
enable them to produce identical daughter cells during a 
relatively large number of cell divisions. This feature is of-
ten referred to as self-renewal or clonogenicity [2]. Another 
property of adult stem cells is their ability to give rise to pre-
cursors of mature, and then terminally differentiated, cells 
with specifi ed morphological characteristics and functions 
[3]. In mature tissues, adult stem cells play a crucial role in 
maintaining local homeostasis by replacing dead or damaged 
cells as well as in the process of tissue remodeling. More re-
cent developments have proved that adult stem cells reside 
in nearly every tissue, including the brain, bone marrow, 
peripheral blood, kidney, epithelia of the digestive system, 
and also the skin, retina, muscles, pancreas, and liver [3]. 
However, the origin of stem cells in adults, as well as wheth-
er they are distinct populations of cells or remnants of their 
embryonic counterparts, is still not clear. Another contro-
versy is whether cells isolated from a particular tissue origi-
nated in this tissue or if they have been temporarily trapped 
in a pool of stem cells circulating in the blood, having thus 
been subjected to a process called homing [4,5].

Another “hot spot” in stem cell science is discussions on their 
plasticity. The ability to change phenotypic characteristics is 
still very controversial. The fi rst “theory” that tried to explain 
this phenomenon was “transdifferentiation”, i.e. cell repro-
gramming in response to external factors and successful set-
tlement in an empty niche of damaged tissue [6]. Many stud-
ies on stem cell transdifferentiation provoked skepticism and 
led to another “way out”, i.e. cell fusion. In this review we 
will try to present different views on stem cell plasticity and 
the results that support them in the context of different cell 
types. The enormous possibilities linked to the harvesting and 
culturing of adult stem cells are related to their multipoten-
tial and transdifferential capabilities, which could be utilized 
in treating a number of disorders including stroke, burns of 
skin and other tissues, spinal cord injuries, and degenerative 
disorders, as well as those related to the nervous system, such 
as Parkinson’s and Alzheimer’s disease [7,8].

HEMATOPOIETIC AND NON-HEMATOPOIETIC STEM CELLS IN 
BONE MARROW AND PERIPHERAL BLOOD

Maintenance of the inner environment and immunity de-
pends mainly on blood. Such functions demand enormous 
power from cells for self-renewal and proliferation, especial-
ly signifi cant after massive bleeding or following infection. 
Research on hematopoietic stem cells has been conducted 
for more than 50 years. The fi rst discoveries where made 
in late 1940s. Subsequently, in 1961, Till and McCulloch 
[9] defi ned the basic features of hematopoietic stem cells 
(HSCs), including their capability for self-renewal and dif-
ferentiation into all types of blood cell lineages.

On the basis of data collected from numerous studies per-
formed mostly in mice, it has been well established that HSCs 
derived from bone marrow can reconstitute the entire he-
mopoietic system in a lethally irradiated individual. This was 
one of the defi nite proofs that stem cells reside in bone mar-
row. However, despite many years of intense research, the 
exact marker(s) of hematopoietic stem cells still cannot be 
defi ned. There are set of markers, such as CD34, CD59, and 
Thy1, that stem-like cells express (Figure 1). In the search 
for stem cells, investigators tried to eliminate cells that ex-
press characteristic features of certain cell lineages [10]. 
Among them is CD71, a marker for the erythroid lineage, 
and CD33, an antigen for the myeloid lineage. For B-lym-
phoid lineages, CD10 expression is common. Moreover, it 
was found that the ability to form primitive colonies decreas-
es with the increase in expression levels of CD38. That is why 
the most primitive hematopoietic stem cells are found only 
in a small subset (about 1%) of CD34+ cells that do not co-
express the CD38 antigen (Figure 1) [11]. The tagged pop-
ulation of cells can be sorted out using the method of fl u-
orescence-activated cell sorting (FACS), by which recovery 
of a heterogeneous population, including cells with stem 
cell potential, can be achieved. HSCs are morphologically 
very diffi cult to distinguish, and the only verifying test for 
the presence of HSCs is the detection of surface markers 
and the ability of sorted cells to reconstitute the hematopoi-
etic system in a myeloablated recipient.

Since the fi rst studies on HSCs, bone marrow was the fi rst 
source from which HSCs were isolated. Because of the dis-
comfort encountered during bone marrow collection and 
procedural complications, other sources of HSC were also ex-
plored. Currently, rapid progress is being made in the prep-
aration of peripheral blood-derived stem cells (PBSCs). This 
procedure is preferred because PBSCs can be obtained in 
a harmless way. Moreover, PBSCs have higher survival rates 
and engraft faster than bone marrow-derived stem cells [12]. 
However, prior to harvesting the PBSCs, the donor needs 
to undergo a mobilization procedure through the adminis-
tration of a human recombinant granulocyte colony-stimu-
lating factor (hr-GCSF), which increases the effi cacy of har-
vested cells. Utilization of a cytokine cocktail (GCSF, IL-3, 
IL-6, Epo) shows signifi cance in retaining hematopoietic 
reconstitution and expansion potentials [13]. Without the 
mobilization procedure it was diffi cult to maintain PBSCs 
in cultures because shortly after harvest the cells initiated 
proliferation with differentiation, leading to a lack of self-
renewal capacities. Ema and colleagues [14] reported that 
in the presence of Stem Cell Factor (SCF) and following 
thrombopoietin induction, cell division and stem cell renew-
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al capabilities could be re-established. More recent reports 
have revealed that the key players in the culture are stromal 
cells that, through the secretion of specifi c signaling factors, 
keep stem cells in their immature state and allow their self-
renewal (vide [15]). GCSF also plays a crucial role in mobi-
lizing circulating tissue-committed stem cells (TCSC) that 
express the chemokine receptor CXCR4 [16]. Sdf-1 is very 
often expressed in damaged tissues and attracts circulating 
TCSCs, thus promoting tissue regeneration [17]. The cir-
culating TCSCs also shed new light on the transdifferenti-
ation/plasticity of adult stem cells (vide [18]).

In the population of hematopoietic cells, similarly to other 
types of tissues, are cells that manifest a specifi c fl ow profi le 
with the use of Heochst 33342 dye. These cells have been 
named side population cells (SP cells) and, when isolated 
from bone marrow, they can differentiate into various types 
of cells different from hematopoietic lineages. Jackson et al. 
[19] showed that SP cells which are CD34-/low, c-Kit+, and 
Sca-1+ maintain capabilities for differentiation into cardi-
omyocytes and endothelial cells in the infracted myocardia 
of lethally irradiated mice. In SP cells, a transporter mole-
cule, BCRP1/ABCG2, seems to be involved in a specifi c ef-
fl ux of Heochst 33342 dye, with a phenotypic trait of prim-
itive SP cells [20].

Beyond the ability to differentiate into lineages of blood 
cells, HSCs have suffi cient plasticity to give rise to other non-
hematopoietic cells, such as muscle cells, neurons, hepato-
cytes, adipocytes, osteoblasts, and others. In numerous ex-
periments with rats and mice as well as studies in humans, 
it has been well documented that in individuals with livers 
injured by hepatic toxins or enzyme malfunctions, bone 
marrow-derived stem cells were found to have differenti-
ated to hepatocytes after transplantation, helping in the 
regeneration of the organ [21,22]. In humans, sex-mis-
matched bone marrow transplants also helped to establish 
blood-to-liver differentiation that gave rise to fully function-
al hepatocytes [5]. However, others suggested that this re-
sult should be considered with caution, especially the ap-

plication of the sex-mismatch method as well as possible 
stem cell fusion ([23] and reviewed by [24]). Another ex-
ample of stem cell capabilities is their differentiation fol-
lowing bone marrow transplantation to cells of the nervous 
system. Braselton [25] and Mezey [26] reported that after 
BM transplantation, donor cells expressed neuronal anti-
gens NeuN and class 3 b-tubulin. The results revealed that 
BMSCs (bone marrow stromal cells) migrated into the brain 
and differentiated to cells expressing neuronal antigens. 
Thus BMSCs acted as an alternative source of stem cells in 
tissue repair. Others also reported that stromal cells from 
bone marrow possess the capability of differentiation into 
cells that express the neuronal-specifi c markers NSE (neu-
ral-specifi c enolase) and NeuN [27,28]. There are also fas-
cinating examples of BMSC plasticity, including differenti-
ation to cell lines such as those in the kidney, lungs, and 
skin (vide review by [29]).

More examples of the plasticity of BMSCs include blood-to-
muscle differentiation. An elegant study conducted by Orlic 
et al. [30] showed that bone marrow-derived stem cells are 
capable of repairing infracted myocardium and give rise to 
new myocytes, endothelial cells, and smooth muscle cells 
that generated the myocardium de novo. There are sever-
al studies revealing the potential of bone marrow stem cell 
differentiation into cardiomyocytes [31,32]. It is speculat-
ed that the cell migration, proliferation, and differentiation 
of transplanted cells are induced by signals released from 
the injured myocardium. Deb et al. [33] presented an ex-
perimental model of gender-mismatched human bone mar-
row-derived SCs transdifferentiated into cardiomyocytes. 
Following a series of studies done by Wagers et al. [34] which 
diminished the role and the possibility of transdifferentia-
tion, the concept of cell fusion emerged as an alternative 
(Figure 1). Terada et al. and Ying et al. [35,36] observed the 
formation of aneuploid cells in co-cultures of bone marrow 
or neural stem cells with embryonic stem cells that displayed 
stem cell features. When bone marrow-derived stem cells 
were implanted into an infarcted myocardium, histological 
analysis revealed that the number of cells was much lower 
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Figure 1.  Ways of stem cell speciation and 
diff erentiation. Solid arrows indicate 
experimentally proven and dashed 
arrows hypothesized ways of cell 
speciation and/or diff erentiation.
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30 days after injection than after 2 days [37]. It appeared 
that the engraftment was not stable, but rather transient, 
and thus cells with hematopoietic characteristics were low 
in number. Studies by Nygren et al. [38] using the trans-
genic LacZ mice model confi rmed that bone marrow-de-
rived cardiomyocytes were in fact results of cell fusion rath-
er than transdifferentiation. These studies put into question 
the work of Orlic and colleagues and has provoked an on-
going discussion in myocardial regeneration on the possi-
bility of SCs to transdifferentiate [39].

STEM CELLS IN NEURAL TISSUES OF ADULTS: YET ANOTHER 
DOGMA OF BIOLOGY HAS FALLEN

The long-standing and unquestioned dogma was that the 
brain cannot renew on its own and that the number of neu-
rons is constant throughout an individual’s entire adult life. 
The concept of neurogenesis did not gain wider understand-
ing until recently, although previous studies on cell prolif-
eration with the use of 3H-tymidine or BrdU had confi rmed 
neurogenesis throughout adulthood and the continuous 
generation of new neurons [40–42].

Neurogenesis in the adult brain takes place in its two major 
regions: the subventricular zone (SVZ) and the hippocam-
pal dental gyrus (DG). The SVZ is the region of the high-
est neurogenetic activity and the place from which the fi rst 
neural stem cells (NSCs) have been isolated [43]. The zone 
is the remnant of the embryonic germinal neuroepitheli-
um, comprising a thin layer of mitotically active cells in the 
walls of the telencephalic lateral ventricles. Mature neurons 
are formed, for example, in the olfactory bulb (OB), the re-
gion to which NSCs migrate from the SVZ along a discrete 
pathway called the rostral migratory stream [40]. The SVZ 
contains a marrow-like structure harboring ependymal cells 
and astrocytes that play a role very similar to stromal cells in 
bone marrow (BM). The ependymal cells and astrocytes form 
specifi c channels called glial tubes [44,45] that are used by 
migrating neuroblasts. Neuroblasts form tight chains and 
migrate towards the OB, where they differentiate to peri-
glomerular or granule neurons, changing their migration 
pattern from tangential to radial. Astrocytes in glial tubes 
provide trophic support to the migrating cells and insula-
tion from electrical and chemical signals released from the 

surrounding parenchyma (vide [46]). In addition to astro-
cytes, ependymal cells, and neuroblasts, transitory amplify-
ing progenitor (TAP) cells called type C cells are present in 
the SVZ. The type C cells are immature, fast-proliferating 
cells that do not express any features characteristic of neu-
roblasts or glia. Doetch and collaborators [47] reported that 
TAP cells are not only progenitor cells derived from stem 
cells, but that they also retain stem cell competence when 
exposed to growth factors. Moreover, depletion of mitoti-
cally active cells in the SVZ following injection with the anti-
mitotic substance Ara-C revealed that GFAP-positive cells re-
populated the zone [48]. GFAP is a member of a family of 
intermediate fi lament proteins and is involved in maintain-
ing the shape and function of astrocytes. Therefore, GFAP is 
considered a specifi c marker of astrocytes. Astrocytes from 
the SVZ function as the primary precursors of rapidly di-
viding transit amplifying cells, and GFAP+ astrocytes in the 
SVZ give rise to olfactory-bulb inter-neurons.

In a very similar manner, the sub-granular layer of astro-
cytes in the hippocampus generates neurons in the den-
tate gyrus [49]. The main criterion distinguishing neuron-
al stem cells from other neural cells present in the brain is 
the in vitro formation of neurospheres by the former. Cells 
in neurospheres proliferate and differentiate into clusters 
of cells with phenotypes of neurons, glia, and oligodendro-
cytes (Figure 2) [43]. The most unique feature of cells in 
neurospheres is their ability to generate secondary spheres 
following dispersion and their renewing abilities even after 
several passages. All the observations suggest that the cells 
arise from pluripotent precursors and may refl ect properties 
of in vivo progenitors. The formation of neurospheres could 
also be induced by the presence of growth factors, such as 
the epidermal growth factor (EGF) [50] and the basic fi brob-
last growth factor (bFGF) [51]. Stem cells forming neuro-
spheres express numerous markers, including LEX/SSEA-1 
[52], nestin [53], AC133 [54], and NG2 [55].

When it became apparent that NSCs really exist, that they 
have capabilities for self-renewal, and that it is possible to 
maintain them as stable cell lines, the next step was to check 
their plasticity. The results were very surprising and also very 
promising. Neural stem cells out-stretched brain (epidermal) 
boundaries in that they appeared to be able to transdiffer-
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Figure 2.  Adult stem cell potential and plasticity.
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entiate. Transdifferentiation is a feature unique to the stem 
cells and their progeny, which are the only cells able to dif-
ferentiate to cells of developmentally unrelated germ lay-
ers (Figure 2) [26]. The fi rst to evaluate this statement was 
an elegant work published by Bjornsen and collaborators 
[56], who reported that clonally derived neuronal stem cells 
could give rise to hematopoietic cells in vivo. In their stud-
ies with sub-lethally irradiated mice, tagged neuronal stem 
cells and their progeny colonized different hematopoietic 
tissues in these animals, including the spleen and thymus. 
Moreover, the cells had the potential to differentiate into 
a variety of blood cell lines. Granulocytes, garnulo-macro-
phages, macrophages, and mixed cell colonies have been 
founded from a single neural stem cell precursor. However, 
no erythrocytes have been detected. Recently, similar data 
have been reported from a study conducted with neuronal 
stem cells in humans [57]. Galli et al. [58] also explained 
that neuromesodermal differentiation is possible only when 
SVZ-derived stem cell colonies consist of a majority of im-
mature cells. Otherwise, differentiation of NSCs showed a 
negligible tendency to transdifferentiate. NSCs from adults 
also revealed enormous myogenic potential [53].

Broad developmental capacity has been demonstrated in two 
separate experiments [59]. NSCs were injected into either 
chick or mouse embryos. Surprisingly, in both cases NSCs 
gave rise to three major cell lineages and colonized many 
different tissues (Figure 2). The neural stem cells immuno-
logically became hepatocytes, myocytes, etc, fi nally proving 
their ability to create progeny of all major cell lineages. An 
additional conclusion from these studies is that NSCs and 
their progeny, upon differentiation, expressed all specifi c 
markers only under particular environmental conditions 
and only in close contact with other cells. NSCs expressed 
muscle specifi c markers, such as MyoD and myosin heavy 
chain, only in situations in which neurons were co-cultured 
with muscle cells and cell contact between neurons and my-
oblasts was maintained (vide [46]).

STEM CELLS IN SKELETAL MUSCLE: THE TISSUES THAT SEEM 
TERMINALLY DIFFERENTIATED AND SPECIALIZED

Skeletal muscle stem cells seem to possess enormous poten-
tial to respond to physiological stimuli such as growth and 
training, but also to injury. Muscles are under continuous 
stress from variable physical forces and endurance condi-
tions. Thus the ability of renewal is one of the most impor-
tant features of muscles. Since the discovery of satellite cells 
[60], they have been candidate stem cells for skeletal mus-
cles. At the moment of birth, 32% of subliminal nuclei are 
represented by satellite cells. Their number decreases with 
age, and in adulthood it is maintained at a level of 1 to 5% 
[61]. The distribution of satellite cells is not the same in dif-
ferent types of muscle fi bers. The presence of satellite cells is 
much higher in the proximity of myonuclei, motoneurons, 
and capillaries. Moreover, oxidative muscle fi bers seem to 
be colonized by a higher number of satellite cells than gly-
colytic muscles are [62,63].

Lying dormant on the periphery of the mature, multinucle-
ated myotubes, beneath the basal lamina of skeletal mus-
cle fi bers, satellite cells are ideally positioned to respond to 
injuries of muscle fi ber. For most of the time the cells are 
quiescent; however, following muscle damage they are ac-

tivated and their morphological characteristics changed by 
means of heterochromatin reduction, an increase in the ra-
tio of cytoplasm to nuclear mass, as well as an increase in 
the number of intracellular organelles [64]. The progeny 
of activated satellite cells fuse to form new multinucleat-
ed fi bers [65]. During the quiescent state the satellite cells 
do not express myogenic regulatory factors such as MyoD 
and MEF2 [66,67]. Due to parallelism between myogene-
sis in the embryo and muscle regeneration in adults, Pax 
7 and Pax 3, the transcriptional factors that keep satellite 
cells in their quiescent state, are responsible for the satel-
lite cells’ formation and consequently for suffi cient myo-
genesis [68,69].

Myf5 and MyoD are the myogenic regulatory factors up-reg-
ulated following injury, whereas Pax7 is at the same time 
down-regulated [66,70]. MyoD and Myf5 are also essen-
tial for myotube formation. In mice devoid of MyoD, the 
myogenic cells fail to progress through the differentiation 
process. Instead, there is an accumulation of mononuclear 
cells [67,71]. Down-regulation of Pax7 and up-regulation of 
MyoD are closely connected with the process of differentia-
tion [72], but at the same time some cells maintain high lev-
els of Pax7 and low levels of MyoD. Following aggregation 
in clusters, the cells become a satellite cell pool [73]. Work 
by Oustanina and coworkers [74] raised doubts that Pax7 
is the only factor that is responsible for satellite cell speci-
fi cation, but emphasized its critical role in muscle renew-
al and homeostasis. New experiments on establishing new 
markers for satellite cells are still going on. Nagata and col-
leagues [75] discovered that levels of sphingomyelin closely 
correlate with the activation of quiescent muscle stem cells. 
Quiescent stem cells also bind lysenin, which is a sphingo-
myelin-specifi c protein and provides a new marker of myo-
genic pool for non-cycyling stem cells.

In response to trauma, injury, training and various growth 
factors such as HGF, FGF, and IGF, satellite cells express a 
tremendous proliferation capacity. This feature fulfi ls the 
major requirement for stem-like cells, which is the ability to 
self-renew. Moreover, in the presence of thiazolinediones 
and BMPs (bone morphogenetic proteins) these cells are 
capable of differentiating into various types of cells, e.g. ad-
ipocytes and osteoblasts [76,77], and even to hematopoi-
etic lineages [78] (Figure 2). What is also important, mus-
cle stem cells are negatively regulated and their growth is 
mediated by myostatin and GDF-8 (growth and differenti-
ation factor 8) [79,80]. Mutation in the myostatin gene re-
sults in increased musculature in pigs and cattle, and simi-
lar data were also reported for humans [81].

Other cells have been discovered in muscles named side 
population (SP) cells. Such cells can be isolated using the 
Hoechst 33342 dye effl ux method. Cells with similar proper-
ties can also be found in other tissues [82]. SP cells possess 
great potency for in vitro differentiation into hematopoiet-
ic precursors [18] and cells of neural phenotype [83] and 
for the in vivo reconstitution of bone marrow [84]. These 
results ensure that muscles contain stem-like cells capable 
of self-renewal and transdiffrentiation to different types of 
tissues. The question still unanswered is whether SP cells 
are satellite cell progenitors or are a totally independent 
population of cells. The latter seems to have been recent-
ly proved by results from a study by Seale and collabora-
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tors in which they discovered an absence of satellite cells 
in Pax7-null mice, whereas the overall number of SP cells 
was unaffected [68].

Results from research on muscle stem cell therapy indicate 
that the most important target diseases seem to be the var-
ious muscular dystrophies, among them Duchenne mus-
cular dystrophy. Dystrophin is the protein lacking in these 
diseases. The role of this protein is to connect the cytoskel-
eton of muscle fi bers with extracellular matrix. The fi rst 
therapeutic attempt to use stem cell therapy was conduct-
ed in 1989 by Partridge and colleagues, who showed that 
the C2C12 myogenic cell line derived from adult satellite 
cells effi ciently reconstituted fi bers in dystrophic mdx mice 
[85]. Subsequently, several clinical attempts were made, but 
unfortunately all of them failed due to the lack of a suffi -
cient cell delivery method (reviewed in [65]). The failure 
also resulted from immune responses and from a slow rate 
or total lack of cell migration. Currently, several in vitro tri-
als are being conducted aiming to overcome these obsta-
cles by optimizing delivery and introducing new immune 
suppression technologies. Additional prospects that arise 
in muscular stem cell therapy are linked with regenerative 
therapy of liver malfunctions. Previously used bone mar-
row-derived stem cells contributed to the repair and regen-
eration of renal tubules after an episode of ischemia [86]. 
In an experiment by Arriero and collaborators [87], mice 
were subjected to renal ischemia transplants of muscle-de-
rived stem cells. The reason for utilizing such cells was a hy-
pothesized higher affi nity for homing within vasculature. 
Differentiation into an endothelial lineage was monitored by 
the appearance of a Tie-2 promoter-driven GFP. An in vitro 
experiment showed that 90% of MSCs grown on Endothelial 
Basal Medium expressed several endothelial-specifi c mark-
ers (CD31, Flk-1, and MECA). Transplantation of undiffer-
entiated stem cells had no effect on renal dysfunction 24 h 
after injury, supposedly due to the lack of enough time for 
full differentiation to endothelial lineage. Previously differ-
entiated SCs were found in renal microvasculature and pre-
served renal function.

STEM CELLS IN THE LIVER ARE INVOLVED IN ITS 
REGENERATION

Under normal physiological conditions, the liver is prolifer-
atively quiescent. Upon injury or following infection it rap-
idly responds by initiating regeneration. There are three 
populations of cells that contribute to restoration of liver 
mass. The system of the fi rst-line response to injury consists 
of hepatocytes and cholangiocytes, which contribute to nor-
mal liver turnover. The intrahepatic biliary tree in the canals 
of Hering is the region where cells are transitional between 

the periportal hepatocytes and the biliary cells lining the 
smallest terminal bile ducts [88]. This is the potential stem 
cell compartment. Cells bud from the canals and differen-
tiate into hepatocytes. Another location of what is consid-
ered to be a stem cell compartment is the periductular re-
gion [89]. Cells called “oval cells” have features similar to 
those of hepatoblasts in the early stages of embryonic liv-
er development. They may also have characteristics of bile 
duct cells and hepatocytes. Oval cells are activated to pro-
liferate after hepatocyte loss in the mature liver when liver 
damage is extensive and chronic or when the proliferation 
of hepatocytes is inhibited, for example by viral infection. 

Then their progeny expand across the liver lobule and dif-
ferentiate into either hepatocytes or bile duct cells and ul-
timately rebuild the liver. Among the markers defi ning liv-
er stem cells is the oval cell-specifi c marker OV-6. Different 
markers of hematopoietic lineage that could be expressed 
in oval cells are c-kit [90] and Thy-1 (CD90), also present on 
the surface of many early hematopoietic progenitor cells and 
immature B and T cells [91]. Oval cells also express CD34, a 
marker of early hematopoietic progenitor cells [92]. What 
is also important is that the ATP-binding cassette ABCG2 
transporter, closely related to the SP phenotype, is upreg-
ulated in human hepatic oval cells [93]. These characteris-
tics give support to the concept that some of the oval cells 
derive from a precursor of bone marrow origin [94].

In a cross-sex experiment, after suppression of hepatocyte 
proliferation in lethally irradiated recipients [95] or in the 
absence of any intentional liver injury [96], bone marrow-
derived hepatocytes were found. However, reports by dif-
ferent groups did not confi rm these fi ndings [35]. Only a 
small subset of hematopoietic stem cells produced hepa-
tocytes and there were no successful non-hematopoietic 
engraftments [97]. Hematopoietic stem cells contribute 
to hepatic regeneration, but the mechanism is not fully 
understood and is supposed to be connected to the pres-
ence and severity of liver injury. In 2003, Kollet and asso-
ciates [98] revealed that following liver injury, chemokine 
Sdf-1 and its receptor CXCR4 participated in the mobili-
zation of hematopoietic stem cells and the directional mi-
gration towards the injured liver. There are additional fac-
tors playing crucial roles in hepatic migration of HSCs, 
such as HGF, FGF-4, IL-8, and MMP-9 [99,100]. A crucial 
question worth asking is whether hematopoietic stem cells 
undergo transdifferentation to hepatocytes or are hepato-
cyte-like cells generated by cell fusion. Cell fusion between 
HSCs and hepatocytes was demonstrated in Fah–/– mice 
and heterokaryotic hybrids were detected [101,102]. It ap-
pears that the major fusion partners are cells of monocyte-
macrophage lineage [103,104]. Generation of hepatocytes 
derived from HSCs is of a very low frequency [105], thus 
the contribution of HSCs to liver replacement following 
injury or disease is low [88]. Up to now there has been no 
direct evidence for transdifferentation of HSCs to hepato-
cytes (for a critical review, see [106]).

IN THE QUEST FOR A UNIVERSAL STEM CELL

The cells of great potential and plasticity are embryonic cells 
(Figure 1). It is, however, unlikely that embryonic stem cell 
(ES)-derived treatments will soon be available for clinical 
use. The prospect of stem cell therapy has heralded much 
hype and controversy, particularly as a result of the devel-
opment of embryonic stem cell lines. The development of 
advanced treatments with ES cells has been slow because 
of the scientifi c reality that it is diffi cult to produce large 
quantities of homogeneous cells for transplantation, partic-
ularly bearing in mind that animal feeder layers, on which 
adult human ES cells tend to rely, might be a contaminant 
[107,108]. In addition, control of the immunological de-
velopment of ES cells is also a signifi cant problem that will 
take time to overcome [109,110]. Adult stem (ADS) cells, 
however, provide an alternative cell source which is more 
ethically acceptable and could supply cells for current trans-
plantation. ADS therapies have had successes using bone 

Med Sci Monit, 2006; 12(8): RA154-163 Tarnowski M et al – Stem cell differentiation

RA159

RA



marrow (BM) stem cells and those derived from umbilical 
cord blood (UCB). One example is the treatment of myo-
cardial infarcts with BM-derived stem cells and in hemato-
therapy using UCB [111–113].

Recent reports on cells with great plasticity found in mice 
claim that the cells residing in the nonadherent, nonhemat-
opoietic CXCR4+/Sca-1+/lin–/CD45– mononuclear cell (MNC) 

fraction in mice and in the CXCR4+/CD34+/AC133+/CD45– 
BMMNC fraction in humans (Figure 1) are populations of 
cells that could be used for clinical applications such as re-
pair of cardiac muscle [16]. Cells of similar phenotype were 
also identifi ed in human umbilical cord blood. The cells 
were positive for TRA-1-60, TRA-1-81, SSEA-4, SSEA-3, and 
Oct-4, but not for SSEA-1. They were cultured for several 
weeks and expanded in large numbers [114].

STEM CELL THERAPY AND ITS LIMITATIONS DUE TO CANCER 
RISK

Stem cells have acquired a golden glow in the past few years 
as a possible tool for reversing the damage of various organs. 
The prediction was that stem cell transplants, whether de-
rived from embryonic tissue or from adult cells that retain 
the fl exibility to develop into various tissues, will someday 
repair hearts crippled by heart attacks or brains under at-
tack by Alzheimer’s or Parkinson’s disease. But the very qual-
ities that make these cells so attractive to medicine, espe-
cially their capacity to replicate ad infi nitum, also hint at a 
dark side. Evidence suggests that they may be the source of 
the mutant cells that give rise to cancerous tumors (also re-
viewed in [115]. In studies of cells in blood cancers such as 
leukemia and in breast and brain cancers, cells called “can-
cer stem cells” have been identifi ed. The fi ndings have raised 
the possibility that the mutations that drive cancer develop-
ment may have originated in the body’s small supply of nat-
urally occurring stem cells. Cancer stem cells resemble these 
normal cells in several ways. In particular, both types are self-
renewing. Thus, when they divide, one of the daughter cells 
differentiates into a particular cell type that eventually stops 
dividing, but the other retains its stem cell properties, includ-
ing the ability to divide in the same way again. Therefore, 
it is possible that cancer stem cells, which form only a small 
proportion of the total tumor cell population, are the only 
tumor cells with the capacity to keep tumors growing.

In the early 1990s, Dick and colleagues [116,117] used a 
model to study the development of human hematopoietic 
stem cells which give rise to various types of blood cells. The 
model is based on an extremely immunodefi cient mouse 
strain, the NOD/SCID mouse. The animals were irradiated 
to destroy their bone marrow and then human stem cells 
were introduced to see if they would produce a new com-
plement of blood cells. After showing that normal human 
hematopoietic stem cells could do this, Dick and his team 
used the approach to study the cancer-causing power of 
acute myeloid leukemia (AML) cells freshly harvested from 
human patients [118]. By a progressive dilution of a known 
number of leukemia cells, it was possible to establish that 
only a very rare AML cell, about one in a million, had the 
ability to reproduce the disease in the animals. Because this 
was a much smaller fraction of cells than that necessary to 
form colonies in culture, the result indicated that the sim-
ple ability to grow did not equate with the ability to develop 

into leukemia in living animals. Thus one could speculate 
that the leukemia-initiating cells had a greater developmen-
tal potential than the vast majority of clone-forming cells 
and might even be stem-like cells. Subsequently, the leuke-
mia-initiating cells were characterized according to surface 
protein markers that distinguish the various cell types of the 
hematopoietic system. The leukemia-initiating cells turned 
out to belong to an exclusive group. They were positive for 
the CD34 marker and negative for CD38, the same as hu-
man hematopoietic stem cells, and did not carry the mark-
ers of more mature cells. The cancer cells’ resemblance to 
normal stem cells holds up even though AML is a hetero-
geneous disease, with several different subtypes depend-
ing on which genetic abnormalities the patients’ cells carry. 
Dick and his colleagues characterized the leukemia-initiat-
ing cells from the various AML subtypes and found that all 
belonged to that same CD34+/CD38– class. When put into 
NOD/SCID mice, however, each cell type produced a leuke-
mia identical to that in the patient from which it had orig-
inally been isolated. A plausible conclusion from this study 
is that the initial mutations that gave rise to the leukemias 
arose in normal stem cells, causing them to take the wrong 
developmental pathway.

Another line of evidence suggesting that cancers originate 
from stem cells comes from studies of the biological ma-
chinery underlying self-renewal. Normal and cancer stem 
cells show some striking similarities. Recently, for example, 
researchers have shown that the genes Bmi-1 and Wnt, both 
of which can cause cancer when mutated, are needed for 
self-renew in normal and cancer stem cells (also reviewed 
in [119]. The Bmi-1 gene participates in normal hematopoi-
etic development, and its malfunction has been linked to 
AML. A study reported by Park and collaborators [120] and 
another by Lessard and Sauvageau [121] link the gene to 
self-renewal. To test whether cells missing Bmi-1 can self-
renew, the researchers transplanted stem cells from Bmi-1 
knockout mice into normal mice that had been irradiated 
to destroy their bone marrow. The stem cells produced a 
normal complement of blood cells, but only for very short 
period of time. After eight weeks, blood cells derived from 
the transplanted cells had almost disappeared, and when 
bone marrow taken from the animals was put into a second 
series of mice, no Bmi-1-defi cient blood cells could be de-
tected. Bmi-1 is also needed for the self-renewal of leuke-
mia cells [121]. In previous reports, Sauvageau and collab-
orators revealed that they could cause an AML-like disease 
in mice by introducing two oncogenes, Meis1a and Hoxa9, 
into the bone marrow cells of the animals [122]. This re-
sult shows that without Bmi-1, leukemia stem cells die out, 
just as normal stem cells do. The Wnt gene is likewise the 
focus of a great deal of research by both cancer researchers 
and developmental biologists. The protein encoded by the 
gene normally controls cell fate decisions during the devel-
opment of many of the body’s tissues. It exerts its effects by 
binding to, and thus activating, a receptor on the cell surface 
membrane. This in turn sets off a series of changes inside 
the cell, culminating in the activation of genes governing 
cell division and differentiation. Details of these processes 
however, are still poorly understood and require further 
intensive research both in the area of stem cells, including 
lessons learned from the biology of embryonic stem cells, 
as well as from the biology of various cancer cell lines and 
various types of cancer.
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