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dynamics of signaling networks and ultimately cellular phenotype. Next, 
we describe five general properties of cancer signaling networks (Fig. 1)  
and define five challenges in cancer network biology and propose 
strategies to overcome them (Fig. 2). By meeting these challenges, 
network biology may fundamentally advance not only basic biology 
but also patient treatment. Finally, we describe how a combination 
of relatively new technologies could become a potent cocktail for the 
discovery of network drugs, and we discuss the practical implementation 
of personalized and tumor-specific cancer therapy.

From genomic lesions to functional network perturbations
Tumor cells often harbor hundreds to thousands of genetic lesions. But 
based on the observation that some of these genetic lesions are repeat-
edly observed in several cancers (e.g., BRAF V600E, present in >50% 
of all malignant melanomas5), it has been hypothesized that only a few 
genetic lesions are causally implicated in cancer development (‘drivers’), 
whereas the majority have no functional consequences (‘passengers’)6.

Although this classification has had some use in identifying 
mutations that are highly prevalent, it is now apparent that a tumor 
is not, under any circumstances, a static and uniform population of 
malignant cells. Rather, it is a dynamic ensemble of subpopulations 
with different abnormalities undergoing molecular evolution7–9. 
Two fundamental principles of cancer signaling networks can explain 
why a binary driver/passenger classification may be too simplistic to 
accommodate the complex dynamic nature of tumors. First, different 
tumors can develop similar phenotypes by acquiring mutations in 
different proteins10, in what we term analogous mutations (Fig. 1a). 
Second, it has been shown that two different mutations not capable 
of causally driving cancer by themselves are able to do so when they 
appear in combination within the same cells or even within two 
neighboring cells11, in what could be described as two passengers 
becoming drivers or, as we refer to them, synthetic oncogenes (Fig. 1b).  
Thus, patient-to-patient heterogeneity can be driven by the presence 
of different mutations in the same or in different proteins that lead to a 
similar signaling state and phenotypic outcome.

Altogether, the intrinsic heterogeneity of tumors makes it a pressing 
challenge for cancer network biologists to develop tools to identify 
the extent to which combinations of cancer mutations affect protein 
function and cellular and phenotypic states (Fig. 2a,b). Even though 
several such tools have been developed (reviewed in ref. 12), existing 
methods are mainly based on protein structure and/or sequence 
conservation. This is at odds with recent findings that show that cancer 
mutations tend not to cluster on the most conserved protein regions. 
In kinases, for example, mutations typically hit the kinase activation 
segment, a functional, yet largely nonconserved protein region13. 
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Cells employ highly dynamic signaling networks to drive 
biological decision processes. Perturbations to these signaling 
networks may attract cells to new malignant signaling and 
phenotypic states, termed cancer network attractors, that 
result in cancer development. As different cancer cells reach 
these malignant states by accumulating different molecular 
alterations, uncovering these mechanisms represents a grand 
challenge in cancer biology. Addressing this challenge will 
require new systems-based strategies that capture the intrinsic 
properties of cancer signaling networks and provide deeper 
understanding of the processes by which genetic lesions 
perturb these networks and lead to disease phenotypes. 
Network biology will help circumvent fundamental obstacles 
in cancer treatment, such as drug resistance and metastasis, 
empowering personalized and tumor-specific cancer therapies.

Cells are constantly computing decisions based on the integration of 
different cues that reach them at various times. In contrast to single-
cell organisms, in multicellular organisms, cellular decisions should,  
ultimately, benefit the organism as a whole, even if that implies that an 
individual cell will have to decide to commit suicide. In line with this 
unique feature, signaling networks have evolved during multicellular 
evolution to allow cells to integrate cues and make decisions that ensure 
cooperative behavior between them. By hijacking these mechanisms, 
cancer cells escape cooperative rules and transition from a game gov-
erned by Nash equilibria1,2 between all cells into a new scenario where 
cancer cells decide their behavior purely based on their own benefit, 
or as phrased by Hanahan and Weinberg3, “become masters of their 
own destinies.” Given the central role played by signaling networks in 
the integration of cues to compute any cellular responses, we argue that 
cancer is not simply a disease with a genetic basis, but is one ultimately 
driven by perturbations at the signaling network level, and that both the 
‘cue-signal-response’ rules of cellular decision-making and the switch 
in strategy from cooperative to selfish are major, hitherto understudied, 
hallmarks of cancer3,4.

In this article, we dissect the strategies cancer cells use to become 
‘selfish’ and drive disease. We first review how genetic lesions can lead to 
altered protein function, which can result in changes to the structure and 
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An insightful example of how to explore 
this sequence-function relationship in protein 
domains was carried out by researchers in 
the Ranganathan and Yaffe laboratories who, 
using methods from statistical mechanics, 
generated synthetic WW domains de novo 
that maintained fold and function17,18. 
Further supporting a complex sequence-
function relationship, additional studies from 
the Ranganathan laboratory demonstrated 
that, in addition to protein architecture 
described as combinations of modules such 
as globular domains and linear motifs19–21, 
protein domains themselves often have well-
defined sectors formed by sparse networks of 
residues often linking spatially distant regions 
that contribute cooperatively but unequally 
to its function22,23. Although some targeted 
studies analyzing several cancer mutations in 
a single kinase have been conducted24, similar 
approaches to those used for WW domains 
should be pursued to generate high-throughput 
experimental studies of cancer mutations in the 
context of signaling networks. These would 
help gain a better understanding of which 
amino acid residues can be changed freely 
without affecting the protein and network 
function and, most importantly, which cannot.

From network perturbations to cellular 
phenotypes
The characterization of cellular signaling pro-
cesses has largely focused on identifying the 
function of individual genes and proteins. A 
notable exception is a landmark study25 on the 
context dependence of the Jun-activated kinase 
(JNK) in apoptosis. Before this work, para-
doxical results suggested that JNK had a pro- 
apoptotic function26, an anti-apoptotic func-
tion27 or even a lack of involvement in apopto-
sis28. The systematic approach undertaken by 
Janes et al.25 revealed that the phosphorylation 
status of JNK (and thus its catalytic activity) 
was not sufficient to determine apoptotic com-
mitment; instead, activation of JNK could lead 
to both apoptosis and proliferation depending 

on the cellular signaling network state at the time of activation. Thus, this 
work demonstrated that a protein’s cellular role is not a static property 
but rather can only be defined dynamically—that is, its role depends 
on the context of the network it is operating within. Similar context 
dependencies have been confirmed for other kinases, such as Erk and 
MK2. Because of this, which is referred to as the multivariate property 
of signaling networks (Fig. 1c), we suggest that it is essential to study 
cellular context at the systems level. 

Although these multivariate molecular networks seem to have evolved 
a complex structure that makes them robust against deletion of a few 
proteins29, they are highly dynamic. Thus, a more accurate description 
of signaling networks should take into account the fact that a single static 
network does not exist unchanged over time. Instead, a cell contains 
a dynamic ensemble of networks whose different permutations are 
manifested in the cell depending on the different cues the cell is presented 

Because cancer cells would obtain the greatest fitness advantage 
from mutations that target the most-functional residues, we reason 
that a better understanding of the functionality of protein residues 
would allow more accurate predictions of the consequences of cancer 
mutations. Functional residues have been defined as those residues 
required for a protein to perform its molecular function(s), in the 
sense that they cannot be freely changed without directly affecting 
the role(s) of the protein14. Here we extend this definition to include 
a more fine-grained and precise definition of protein function as 
an ensemble of protein features that together describe the different 
functional capabilities of proteins (e.g., ATP binding, substrate 
specificity, protein activation or phospho-tyrosine binding). This new 
definition would not only adapt well to current studies of sequence-
function associations15,16, but also lead to a better description of the 
effects of a mutation affecting such residues (Fig. 2a,b).

Figure 1  Properties of cancer signaling networks. (a) Analogous mutations. Two different tumors 
may achieve the same signaling and phenotypic outcome with two different mutations (b) Synthetic 
oncogenes. Mutations that are not oncogenic on their own can cooperate when appearing together 
to drive tumor formation11; by analogy to synthetic lethality, we call the genes harboring cooperative 
mutations, synthetic oncogenes. (c) Multivariate nature of signaling networks. The response of a cell to 
a specific cue depends on, and can only be predicted by taking into account, the state of the cellular 
signaling networks25. This dependency, known as the multivariate nature of signaling networks, is 
often neglected when classifying mutations and genes as oncogenes or tumor suppressors and cancer 
drivers or passengers. (d) Dynamic networks. Although signaling networks are often represented as 
static, it is clear that they are highly dynamic entities. Given that the role of signaling networks in 
computing cellular responses is highly dependent on it, and that cancer mutations will perturb it, this 
dynamic nature is a critical property of cancer signaling networks. (e) Signaling network landscapes. 
The different states that a signaling network occupies can be represented as a landscape (with stable 
steady states or attractors represented as valleys and unstable steady states represented as hills), where 
the cell constantly gets pushed by signaling cues31,32,39,40. These states drive cellular and disease 
phenotypes and represent network drug targets.
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with (Fig. 1d). This dynamic nature of signaling networks could, at least 
in part, explain why all mutant proteins do not seem to be expressed at a 
given point in time30, if a substantial part of the proteome is so dynamic 
that it is expressed only when the cell senses a specific cue.

Moreover, according to a general principle of complex systems 
introduced in the 1980s31,32, dynamic cellular networks can only exist 
in a finite number of states, owing to the constraints that interactions 
between nodes impose on one another. These network states can be 
represented as landscapes, where most-probable and least-probable 
states are represented as valleys and mountains, respectively (Fig. 1e). 
Cells are continuously exploring this landscape 
and are pushed from one state to another by 
different environmental or intracellular cues.

Implications for cancer research
The multivariate nature of signaling networks has 
profound implications for cancer research. Just as 
it is inaccurate to assign a static function (e.g., 
apoptotic or anti-apoptotic) to a single protein, 
it is clear that static interpretations of mutations, 
that is, driver or passenger mutations, are also 
misleading. For example, given that the pheno-
typic role of JNK strongly depends on network 
state, it is clear that a mutation in JNK (and thus 
probably any other mutation) should not be 
statically labeled as a driver or passenger or as 
an oncogene or tumor suppressor, as such clas-
sifications are context dependent (e.g., disease 
or cell-type specific). Several examples, such 
as Myc33 or WT1 (ref. 34) gene products that 
act as both tumor suppressors and oncogenes, 
support this idea. These results underscore the 
importance of assessing mutations based on their 
effects on signaling networks and of developing 
novel classification methods to do so. Along these 
lines, MAP2K4 (one of the protein kinases that 
can phosphorylate and activate JNK) has been 
shown to be recurrently lost or mutated in sev-
eral cancers35–38. These represent prime examples 
of mutations that may display ambivalent pheno-
typic impact similar to JNK.

Motivated by the example of MAP2K4 and 
many other mutated kinases38, we maintain 
that mutations capable of affecting signaling 
networks—which we call network-attacking 
mutations (Fig. 2c)—are more likely to affect 
phenotype than other mutations. Thus, we discuss 
a general strategy in which mutations in individual 
cancers are assessed based on, first, the likelihood 
they will affect protein function, and second, 
the cellular role of the signaling network that 
they are operating within (Fig. 3). Our strategy 
extends the concepts  introduced by Waddington 
and elaborated by Kauffman and Huang et 
al.31,32,39,40, where cancer mutations are turned 
into perturbations capable of reshaping these 
landscapes. We represent the cellular response 
or phenotype as another dimension where each 
network state (every point in the landscape) is 
constantly projected to and translated into a 
cellular decision or phenotypic outcome. 

We postulate that network-attacking mutations affect the cell not by 
perturbing how the signaling landscape is projected to the phenotypic 
dimension, but by changing the ensemble of dynamic networks that 
can be manifested in a cell and, in consequence, the number and 
stability of steady states in the signaling landscape, thus creating new 
attractor states that only cancer cells can occupy, also known as cancer 
network attractors (Fig. 3). This has additional implications for other 
mechanisms, such as oncogene and non-oncogene addiction41, where 
cancer cells would be trapped in cancer attractor states and could 
escape from them by reverting the genomic aberration that initially 
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Figure 2  Challenges in cancer network biology. (a) Functional consequences of cancer mutations. 
Using an ensemble of protein-function features (e.g., ATP binding, substrate specificity, activation 
of the protein kinase or phospho-tyrosine binding), which together represent a comprehensive 
description of a protein’s molecular functions, will enable more accurate and predictive evaluation 
of cancer mutations. (b) Modeling of disease networks. Although experimental and computational 
tools for modeling molecular networks exist, creating more comprehensive, sensitive and 
accurate new tools especially designed to model disease-associated networks still represents a 
big challenge in network biology. (c) Network-attacking mutations and cancer network attractors. 
Network-attacking mutations are mutations that lead to a new cellular phenotype by perturbing 
signaling networks either at the network structure or the network dynamics level. Network-
attacking mutations transform signaling networks, generating new possible network states by 
changing the number and/or stability of steady states in the signaling landscape31,32,39,40. These 
acquired signaling capabilities lead to alterations in the cell’s normal ‘cue-signal-output’ flow 
and thereby drive disease phenotypes (see Fig. 3 for further details). (d) Tumor subpopulations 
and micro-environment. The field is only beginning to comprehend the complex interactions that 
exist between different co-evolving tumor cell subpopulations and between those cells and the 
tumor microenvironment, both of which strongly influence tumor progression. (e) Network-aware 
and temporal drugs. As predicted by R.L. and Pawson66 several years ago, new pharmaceutical 
strategies that target networks instead of single proteins are becoming available47,48. We predict 
this trend will not only continue, but also include recent advances that highlight the possibility to 
‘cure’ networks using time- and order-dependent therapies68. In coming years, the discovery of 
resistant, metastatic, tissue or cell-specific networks could lead to an even greater advance in the 
field of network medicine (Fig. 5).
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Despite the fact that the number of known cancer network-attacking 
mutations is still relatively low, recent findings suggest that in-frame 
mutations are enriched on interaction interfaces57, which implies 
they are also likely to affect determinants of specificity. Moreover, 
many fusion proteins have been discovered that likely directly rewire 
or create new network states58. Given the rate at which cancer muta-
tions are being reported and the development of new computational 
methods for systematically identifying these mutations (Fig. 2b),  
we predict a steep increase in the number of network-attacking muta-
tions that will be uncovered in the coming years.

Personalized cancer network biology
Led by recent advances in sequencing technologies, the amount of data 
on cancer genome mutations is growing exponentially59. Current efforts 

caused the perturbed landscape. Given 
the high degree of determinism that exists 
between signaling networks, landscapes and 
phenotypes, we argue that network-attacking 
mutations are at the heart of all new decision-
making capabilities acquired by cancer cells. 
Consequently, in our view, the study of 
both network-attacking mutations and new 
attractor states acquired by cancer cells, that 
is, cancer network attractors, deserves the 
highest priority from the field. Such studies 
should be performed through systematic and 
quantitative sampling of cell dynamics at 
multiple levels (e.g., genomic or epigenetic, 
proteomic and phenotypic), followed by 
nonlinear interpolation and integrative 
computational modeling (Fig. 4).

The first network-attacking cancer mutation, 
described more than 15 years ago42, was a point 
mutation in the kinase domain of RET (M918T), 
which leads to a switch in peptide specificity. In 
line with their importance, network-attacking 
mutations have attracted more attention in 
recent years43–48. Moreover, information has 
been accumulating steadily about how specific-
ity in signaling networks and modular protein 
domains emerges49–51, leading to the defini-
tion of determinants of specificity in protein 
domains52,53. These determinants, sometimes referred to as  specificity-
determining residues, are residues that can lead to substrate specificity 
changes after mutation. Notably, direct mutagenesis of these determinants 
of specificity has been used to rewire the entire histidine kinase signal-
ing system in bacteria in a predictive manner54. Recent follow-up work 
indicates that mutations in determinants of specificity prevent cross-talk 
and allow protein family expansions55, in a process similar to the one 
powered by negative selection over Src homology 3 (SH3) protein domains 
that show similar specificity56. We propose that similar studies in human 
signaling networks, coupled with mapping of cancer mutations on these 
determinants of specificity, would shed new light on whether signaling 
rewiring is a general principle of oncogenesis and tumor progression, 
knowledge of which would in turn be critical as molecular therapies tar-
get proteins and their networks and not genes.

Figure 4  Traditional versus network biology 
approaches. In more traditional biological 
approaches, where only one or a few genes 
or proteins are sampled across a limited 
set of conditions, there has been limited 
success in deriving predictive models across 
conditions or cell types that would require 
comprehensive sampling. In contrast, 
network biology relies on systematic 
sampling across combinations of states 
that result in increased performance of a 
network model. Unlike classic approaches, 
in which the system is stimulated with 
single specific cellular cues (e.g., growth 
factor), in the network biology approach, the 
multivariate nature of signaling networks and 
the nonlinear relationship between signaling 
input and output can be successfully 
elucidated by interrogating the system with 
multiple orthogonal cues.
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Figure 3  Network-attacking cancer mutations. Proteins are the key elements of signaling networks as a 
result of their ability to integrate external cues and direct the information flow toward a specific cellular 
outcome (e.g., epidermal growth factor (EGF) leading to proliferation or tumor necrosis factor alpha  
(TNF-a) leading to apoptosis). Network-attacking mutations affect the ‘cue-signal-output’ cellular 
information flow by affecting either the dynamics (middle), for example, by keeping proteins 
constitutively active, or the structure (right), by affecting protein specificity, of the signaling networks. 
Signaling networks can be represented as a landscape with the most likely network states represented 
as valleys (stable steady states or attractors) and the least likely network states as mountains (unstable 
steady states). Network-attacking mutations dysregulate signaling networks by perturbing the number 
and/or stability of steady states in the landscape, effectively creating new cancer-specific attractors that 
only cancer cells will be able to reach.
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from the Cancer Genome Atlas and Cancer 
Genome Project, now under the umbrella of the 
International Cancer Genome Consortium60, 
will facilitate the annotation and collection of 
cancer genome data. We foresee similar waves 
of technological progress and the generation 
of new consortiums in the cancer proteomics 
fields in the near future. The establishment 
of the Clinical Proteomic Tumor Analysis 
Consortium (http://proteomics.cancer.gov/pro-
grams/cptacnetwork),  and the implementation 
of new approaches61 and labeling techniques62 
optimized for patient samples are encouraging 
advances in this direction.

These advances, however, will need to 
be coordinated with new algorithmic and 
experimental high-throughput methods (e.g., 
high-content screening) capable of interpreting 
this flood of information because the functional 
interpretation of the data is currently the main 
bottleneck in the field of personalized cancer 
network biology. Computational integration 
of large quantitative data sets is also becoming 
increasingly important, and thus there is a 
growing requirement for supercomputing 
infrastructure with large algorithmic dynamic 
range (e.g., next-generation large shared memory systems). Benchmarking 
and validation of systematic workflows and algorithms is already receiving 
increasing attention through initiatives, such as the DREAM challenge63 
and IMPROVER64.

Two emerging areas in network biology that are likely to contribute to 
the future of cancer research are the study of cell-cell interactions (Fig. 2d)  
and drugs specifically designed to interfere with diseased network 
dynamics (that is, network drugs; Fig. 2e).

R.L. and collaborators65 studied cell-cell interactions by isotopically 
labeling two distinct subpopulations of cells, one expressing ephrin-B1+ 
and the other Eph-B2+, and carrying out a comprehensive phospho-
proteomic analysis. This strategy facilitated the first measurements 
of phosphorylation events during the interaction of two cell 
subpopulations. The proliferative behavior of cancer cells is still poorly 
understood in part because it is difficult to experimentally study the 
transmission of proliferative factors from one cell to its neighbors3. 
Therefore, we argue that a similar isotopic labeling strategy could 
be used to investigate the cooperation between cells with different 
oncogenic lesions that together (that is, synthetic oncogenes; Figs. 1b 
and 2d) lead to tumor formation11.

Combination drugs that interfere with disease networks (so-called 
network medicine66) have been shown to lead to a better response than 
single-hit therapies by causing secondary perturbations to signaling 
networks47,48,67. Recent work by the Yaffe laboratory represents a clear 
leap forward within the field of network medicine68,69. Following network 
modeling, Yaffe and colleagues68 managed to decode the signaling 
network dynamics that drive resistance to DNA-damaging chemotherapy. 
This information was used to sensitize otherwise resistant triple-negative 
breast cancer cells to conventional DNA-damaging chemotherapy by 
administering doxorubicin (Adriamycin, Doxil) and erlotinib (Tarceva) 
in an order- and time-dependent fashion. This could be considered the 
first example of temporal network drugs (Figs. 2e and 5).

We predict that personalized or even tumor-specific cancer therapy will 
become a reality in the foreseeable future, starting from early diagnosis of 
the disease, followed by next-generation sequencing, proteomic analysis, 

high-throughput profiling of phenotypic cell states in the tumor and 
design of patient-specific combinations of network drugs with resistance 
follow-up (Fig. 5). Relatively new techniques, such as single-cell and high-
depth sequencing70,71, imaging72 and cytometry time-of-flight73, could 
prove especially valuable for monitoring the number, properties and 
behavior of different tumor subclones (Fig. 2d). Ideally, network drugs, 
such as the aforementioned order- and time-dependent combination68, 
should then be chosen based on the interpretation of sequencing as well 
as the proteomic and phenotypic analysis of tumor cells and tested on 
the tumor-specific cell lines and xenograft model. The best-performing 
combination should ultimately be transferred back to the patient (Fig. 5).  
This whole process should take the shortest time possible to avoid 
the evolution of the tumor in the patient and the consequent loss of 
relationship between the primary tumor and the cell line. Tumor-
specific cell lines would be kept and treated with the same drugs used 
in the patient to monitor tumor evolution and treat for resistance 
and/or metastasis as soon as there is enough evidence of it (Fig. 5).  
Ideally, every patient and paired xenograft or cell line should have a 
complete electronic record showing the treatment history to facilitate 
retrospective and cross-disease studies74,75.

Conclusions
Although we have highlighted some of the challenges that still exist in 
cancer network biology, substantial progress is also being made. For 
example, the usage of patient-derived tumor tissue in animal xenograft 
models to test the response to particular drugs aimed at developing 
new personalized cancer therapy is rapidly becoming an established 
technology76. Surgical orthotopic implantation to transplant tumors 
taken directly from the patient to the corresponding organ of immu-
nodeficient mice77 is currently one of the most promising methods to 
enable drug screening in patients. In addition, new clinical trials, such 
as the MD Anderson T9 project78, are under way in which patients are 
given therapy that targets tumor-specific aberrations. Nevertheless, 
the implementation of the strategy depicted in Figure 5 would benefit 
from further developments in technology, funding and legislation. For 

Figure 5  Personalized cancer network biology. The goal of personalized cancer network biology is to 
be able to treat each tumor with the best combination of drugs tailored to that tumor. Ideally, early 
diagnosis should be followed by the development of tumor-specific cell lines and xenograft models, 
cancer genome sequencing, and proteomic and phenotypic analysis. Combinations of network drugs 
should then be tried in the tumor-specific cell line and xenograft model and eventually transferred 
back to the patient. Continuing to treat the tumor-specific cell culture with the same network drug 
combination as is used in the patient may be useful for understanding potential resistance and/or 
metastasis.
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example, generating models for cancer research that represent human 
patient diversity79 and mimicking the complexity of tumor microenvi-
ronments (J.T.E. and collaborators)80 remain extraordinary challenges 
(Fig. 2), and further research efforts and investments are required. 
As cancer biology becomes a ‘big data’ science, similar to physics, 
we expect to see more systematic, data-driven research efforts that 
will uncover and confront many of the tumor complexities that have 
remained elusive so far.

Despite recent predictions of >13 million cancer deaths in 2030 
(ref. 81), as discussed in this Perspective, we foresee that within this 
timeframe tumor-specific medicine will become a reality, thanks to 
a new generation of cancer network biologists who will hopefully 
overcome these challenges, positively contributing to the battle 
against this devastating disease and the significant reduction of patient 
suffering.
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