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During the last few decades, cancer research has focused on the idea that cancer is caused by genetic alterations and that
this disease can be treated by reversing or targeting these alterations. The small variations in cancer mortality observed during
the previous 30 years indicate, however, that the clinical applications of this approach have been very limited so far. The devel-
opment of future gene-based therapies that may have a major impact on cancer mortality may be compromised by the high
number and variability of genetic alterations recently found in human tumors. This article reviews evidence that tumor cells, in ad-
dition tfo acquiring a complex array of genetic changes, develop an alteration in the metabolism of oxygen. Although both
changes play an essential role in carcinogenesis, the altered oxygen metabolism of cancer cells is not subject to the high genetic
variability of fumors and may therefore be a more reliable target for cancer therapy. The utility of this novel approach for the de-
velopment of therapies that selectively target tumor cells is discussed.
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CANCER AS A GENETIC DISEASE

The genetic basis of cancer was dis-
covered more than a century ago, when
David von Hansemann observed that
cells from various carcinoma samples
had chromosomal alterations. At the be-
ginning of the 20th century Theothor
Bovery suggested that cancer might re-
sult as a consequence of these chromo-
somal aberrations, laying the founda-
tions for viewing cancer as a genetic
disease (1). But the idea of cancer as a
genetic disease was not widely accepted
at that time. If cancer was caused by a
genetic mutation, it was not clear why
there was a delay of many years be-
tween the exposure to a mutagenic
agent and the onset of cancer, or why
the incidence of cancer increased so dra-
matically with age. Over time, the ob-
servations that no single gene defect
causes cancer and that several muta-
tions could be required for cancer to de-

velop explained the long latent period
of cancer and the age distribution of this
disease (2—4). In the second half of the
20th century, the idea that the develop-
ment of cancer required the acquisition
of several mutations began to be widely
accepted, and efforts were made to
identify which genes were involved in
carcinogenesis (5,6). In the 1980s the
first human oncogenes and tumor-sup-
pressor genes were discovered, and the
idea that cancer was caused by muta-
tions in these two types of genes was
gaining firm ground (7-11). Mutations
in oncogenes would increase the synthe-
sis of proteins that stimulate cell prolif-
eration, and mutations in tumor-sup-
pressor genes would result in the loss of
proteins that restrain cell proliferation
and induce apoptosis. The accumulation
of several mutations in these two types
of genes would allow cells to proliferate
in an uncontrolled fashion and would
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lead to cancer. It was believed at that
time that cancer would be explained by
a relatively low number of mutations in
these genes, and that cancer would
eventually be treatable by reversing or
exploiting these genetic changes.
Molecular analyses of human tumors
carried out in the last decade have re-
vealed that the genetic alterations of
cancer cells are much more numerous
and unstable than previously thought
(12). For instance, by sampling colorec-
tal premalignant polyp and carcinoma
cell genomes, Stoler et al. (13) found that
the mean number of genomic changes
per carcinoma cell was approximately
11,000. In addition, much evidence has
accumulated stating that mutations
(changes in the DNA sequence) are not
the only cause of the altered gene ex-
pression of cancer cells. Epigenetic alter-
ations (heritable and reversible changes
other than the DNA sequence) and ane-
uploidy (numerical and structural ab-
normalities in chromosomes) are com-
mon alterations in tumor cells, which
modify gene expression and may also
play a crucial role in carcinogenesis
(14-18). Such is the genetic complexity
and variability of tumor cells, that the



idea of understanding cancer in terms of
changes in specific genes is losing
ground in favor of proposals that seek
to rationalize cancer in terms of a lim-
ited number of acquired phenotypes
(the so-called hallmarks of cancer) and
altered cellular pathways (19-21). We
are beginning to realize that the high
genetic variability of tumor cells is a se-
rious obstacle for the design of gene-
based therapies that may have a major
impact on cancer mortality (12,21).
Despite the complexity and variability
of the cancer genome, much research is
devoted to characterizing the genetic
profile of tumors to rationalize and per-
sonalize cancer therapy (22-24). The re-
cent approval of several cancer-targeted
therapies (therapies that are intended to
target the molecular defects of cancer
cells specifically) indicate that the altered
genome of cancer cells can be exploited
therapeutically (25). The landmark event
in this new field was the development of
imatinib mesylate (Gleevec) for the treat-
ment of chronic myeloid leukemia
(CML). This drug was developed as a se-
lective inhibitor of the kinase BCR-ABL,
the fusion protein product of a chromo-
somal translocation that is involved in
the pathogenesis of CML. Clinical trials
revealed that imatinib mesylate induced
complete hematological remission in a
very high percentage of patients with
chronic-phase CML (26). Although this
drug has become the standard of care for
CML, it is important to note that ima-
tinib mesilate does not cure the disease
(it just keeps it under control for many
patients for as long as they take the
drug) and that some patients treated
with this drug develop resistance to
treatment (27,28). Other targeted thera-
pies have been approved for cancer treat-
ment in recent years; however, none of
these therapies have led to major im-
provements in the survival of patients
with the most common types of cancer. It
is important to be reminded that cancer
mortality has not changed much during
the last three decades (29), and that the
small declines observed in recent years
in some types of cancer (that is, lung, co-

lorectal, breast and prostate cancer) are
not attributable only to better therapies
but also to the implementation of pre-
vention and early detection campaigns
(30,31).

Although the genetic alterations of
tumor cells are extremely numerous and
unstable (12,13,21), we are moving to-
ward an era of personalized treatments
based on the genetic profile of each
tumor (22-24). It is expected that much
time and effort and many resources will
be necessary to develop therapies that
will be useful in a small percentage of
patients with cancer. In addition to
building up a complex array of genetic
changes, tumor cells acquire an alteration
in the metabolism of oxygen, a process
that plays an important role in carcino-
genesis and could be exploited to de-
velop therapies for a broad range of pa-
tients with cancer.

KEY ROLE OF ALTERED OXYGEN
METABOLISM IN CANCER

Nonmalignant cells use oxygen (O,) to
generate energy in the form of ATP
through the process of oxidative phos-
phorylation (oxphos). Accumulating evi-
dence indicates that, instead of fully cou-
pling the metabolism of O, with the
generation of energy, cancer cells activate
glycolysis to meet their energy demands
and use O, to generate excessive levels of
the reactive oxygen species (ROS) super-
oxide anion (O,") and hydrogen perox-
ide (H,O,). This alteration in the metabo-
lism of O, (dysoxic metabolism) is a
common feature of cancer cells and plays
an important role in carcinogenesis
(32-38).

It is well known that uncontrolled cell
proliferation is the most relevant feature
of cancer. It is also recognized that the
genetic defects of cancer cells result in an
altered gene expression and in the pro-
duction of signals that make these cells
proliferate in an uncontrolled fashion.
Equally important for cell proliferation is
that the dividing cell duplicates all its
cellular components to create two
daughter cells (Figure 1A). To do this,
proliferating cells must take nutrients
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from the blood and use them to synthe-
size all the macromolecules and cellular
components required for the formation
of a new cell. The cellular uptake of glu-
cose from the blood and the activation of
glycolysis are essential processes for cell
proliferation, because the activation of
glycolysis provides most of the building
blocks required for the synthesis of these
macromolecules and cellular components
(37). Several glycolytic enzymes are over-
expressed in cancer cells and have been
shown to play an important role in can-
cer (39-41). The increased cellular uptake
of glucose and the upregulation of gly-
colysis of cancer cells can indeed be ob-
served with clinical tumor imaging (fluo-
rodeoxyglucose positron-emission
tomography) and is currently used for
early diagnosis and better management
of oncology patients (42).

The fact that the blood vessels deliver
both glucose and O, is a problem for the
activation of glycolysis, because the
presence of O, is known to cause glycol-
ysis inhibition (Pasteur effect). This situ-
ation suggests that to proliferate cancer
cells must develop the capacity to acti-
vate glycolysis in the presence of O,
(Figure 1A), a characteristic that was
first observed several decades ago by
the Nobel laureate Otto Warburg. War-
burg also proposed that the high gly-
colytic rates he observed in cancer cells
despite the presence of O, were caused
by a defect in respiration (oxidative
phosphorylation) and that this defect
was the origin of cancer (43).

Although the activation of glycolysis
in the presence of O, (aerobic glycolysis
or the Warburg effect) has repeatedly
been observed in cancer cells (37,42,44),
it is not clear why and how this phenom-
enon occurs. I first proposed that to pro-
liferate cancer cells (and normal prolifer-
ating cells) must activate glycolysis
despite the presence of O, (33,37). As
shown in Figure 1A, cell proliferation
would be compromised if glycolysis
were always inhibited in the presence of
O, (33,37). The same proposal was later
made by others (45). As to how this phe-
nomenon occurs, evidence suggests that
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Figure 1. Cancer development requires both the acquisition of DNA alterations and a change in the metabolism of oxygen (dysoxic me-
tabolism). (A) The uncontrolled cell proliferation that characterizes cancer requires signals for cell proliferation and the synthesis of new
macromolecules (for example, nucleic acids, lipids, proteins). Glycolysis provides building blocks (for example, glucose 6-phosphate, dihy-
droxyacetone phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate) that participate in the synthesis of these macromole-
cules. The presence of O, can inhibit glycolysis (Pasteur effect) and, therefore, the biosynthesis of new macromolecules required for the
uncontrolled cell proliferation that characterizes cancer. (B) A change in the metabolism of O, (dysoxic metabolism) would allow the ac-

fivation of glycolysis in the presence of O, and, therefore, cell proliferation and cancer development.
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the change in the metabolism of O,
(dysoxic metabolism) (Figure 1B) is cru-
cial for the activation of glycolysis in the
presence of O, (37). Briefly, high ATP lev-
els repress glycolysis via allosteric inhibi-
tion of phosphofructokinase, a key en-
zyme in the regulation of glycolysis. The
possible basis of the Pasteur effect is that
the presence of O, allows ATP synthesis
through oxphos, which causes an al-
losteric inhibition of phosphofructoki-
nase resulting in the inhibition of glycol-
ysis. This proposed mechanism suggests
that glycolysis is not directly inhibited by
O,, but by ATP, and that the presence of
O, will not cause the inhibition of glycol-
ysis when O, is not used to generate
enough ATP (37). The metabolic switch
from oxphos to glycolysis commonly ob-
served in cancer cells (43,46-48), along
with the increased production of O,
and H,O, found in these cells (49-53),
supports the idea that cancer cells have
this alteration in the metabolism of O,.
This alteration may play a crucial role in
carcinogenesis by allowing the activation
of glycolysis in the presence of O, and,
therefore, the uncontrolled cell prolifera-
tion that characterizes cancer (Figure 1B).
A deviation of the metabolism of O,
from the pathway that generates ATP to
the pathway that generates ROS may be
necessary for cell proliferation and tumor
growth (Figure 1B) (33,37). Evidence sug-
gests that this metabolic switch may also
play an important role in tumor metasta-
sis (34). Hypoxia-inducible factor 1
(HIF-1) is a key regulator of O, homeo-
stasis, and the activation of HIF-1 is
known to play a vital role in the most
relevant aspects of carcinogenesis, in-
cluding cell survival, angiogenesis, inva-
sion, metastasis, cellular immortalization
and metabolic reprogramming (54-56).
Because an increased production of H,O,
(57) and the accumulation of glycolytic
metabolites (58) are known to activate
HIF-1, it has been proposed that the
dysoxic metabolism represented in Fig-
ure 1B may play an important role in the
activation of HIF-1 (32). This dysoxic me-
tabolism results in increased production
of O," and H,0,, and evidence suggests
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Figure 2. Models of carcinogenesis. In addition to the acquisition a complex array of DNA
alterations proposed in the accepted model of carcinogenesis (A), the model discussed
in this review (B) proposes that cancer develops an alteration in the metabolism of oxy-
gen. Although both changes must interact for the development of cancer, the altered
oxygen metabolism of tumor cells is not subject to the high genetfic complexity and vari-
ability of fumors and may therefore be a more reliable target for cancer therapy.

that the accumulation of these ROS
causes oxidative stress and plays an im-
portant role in carcinogenesis (35,36,59,
60). The key role of ROS in carcinogene-
sis is supported by experimental data
showing that cancer cells commonly
have increased levels of ROS (49-53),
that ROS can induce cell malignant
transformation (61,62) and that the ma-
lignant phenotype of cancer cells can be
reversed by reducing the cellular levels
of ROS (63-68). Overall, evidence sug-
gests that the alteration in the metabo-
lism of O, represented in Figure 1B is a
common feature of cancer cells and may
play a key role in carcinogenesis (32-38).

A NEW MODEL OF CARCINOGENESIS
The most accepted model of carcino-
genesis postulates that tumorigenesis is
caused by DNA alterations and that can-
cer can be treated by reversing or ex-
ploiting these alterations (Figure 2A). A
new model of carcinogenesis is proposed
in Figure 2B. According to this new
model, the development of any cancer
requires that the future tumor cell both
acquires a complex set of DNA alter-
ations and develops an alteration in the
metabolism of O,. It is widely acknowl-
edged that the altered genome of tumor
cells plays a key role in carcinogenesis.
Evidence suggests that an alteration in

the metabolism of O, from the pathway
that generates energy to the pathway
that produces ROS may also play an im-
portant role in the development of cancer
(discussed in this review). This new
model considers that both alterations
must cooperate for the formation of a
cancer; the acquisition of DNA alter-
ations leads to an alteration in the metab-
olism of O, and vice versa. Indeed, there
is evidence that the transition from a nor-
mal to a malignant phenotype brought
about by cancer-causing genes is associ-
ated with a progressive energy switch
from oxphos to glycolysis (69). Alter-
ations in p53, one of the most frequently
mutated tumor-suppressor genes in can-
cer, have also been proposed to partici-
pate in the metabolic switch from oxphos
to glycolysis (48). Mitochondrial muta-
tions may reduce the activity of oxphos
and have been associated with an in-
crease in the cellular production of ROS
(70). The activation of several oncogenes
is also known to increase the cellular
production of O,"” and H,0, (71-74).
Conversely, an alteration in the metabo-
lism of O, (from the pathway that gener-
ates ATP to the pathway that generates
O," and H,0,) can lead to the acquisi-
tion of DNA alterations. H,O, is indeed
well known to induce DNA alterations,
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Figure 3. Carcinogenic agents can induce DNA alterations and an alteration in the me-
tabolism of oxygen. This figure represents an example of how a carcinogenic agent can
induce both DNA alterations and a dysoxic metabolism via P450. See text for references

and further details.

including DNA damage, mutations and
genetic instability (75-78).

Most carcinogenic agents have been
shown to induce DNA alterations. Most
carcinogenic agents also induce oxidative
stress (38,79), and a deviation in the me-
tabolism of O, toward the pathway that
generates ROS is a key feature of oxida-
tive stress (38,60,79). An example of how
a carcinogenic agent can induce both
DNA alterations and an alteration in the
metabolism of O, is shown in Figure 3.
Most chemical carcinogens need to be
enzymatically activated to become geno-
toxic, and the cytochrome P450 (P450)
enzymes are the most prominent en-
zymes involved in such activation (80).
The activity of P450 enzymes is associ-
ated with the generation of O,"” and
H,0, (81), and H,0O, is well known to in-
duce DNA alterations (75-78). An in-
crease in the generation of H,0, is associ-
ated with the activation of HIF-1 (32,57),
which can lead to the repression of ox-
phos and the activation of glycolysis
(82,83). The accumulation of glycolytic
intermediates caused by the activation of
glycolysis can also increase the activity
of HIF-1 (58) (Figure 3). Carcinogenic
agents can induce DNA alterations and
an altered O, metabolism independently
of P450. For instance, the increase in the
intracellular pH induced by some car-
cinogenic agents seems to be crucial for
the development of cancer (84,85). A rise
in the intracellular pH can increase the

production of O,"” (86) and lead to DNA
alterations and a dysoxic metabolism
through the pathways represented in
Figure 3. Because exposure to many
other carcinogenic factors has been asso-
ciated with an increased production of
ROS (38,59,79), these carcinogenic factors
may also lead to DNA alterations and a
dysoxic metabolism through the path-
ways represented in Figure 3.

According to the most accepted model
of carcinogenesis, the DNA alterations of
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cle for the design of gene-based therapies
that may have a major impact on cancer
mortality (12,21). The importance of the
new model of carcinogenesis represented
in Figure 2B is that it offers an alternative
target for the treatment of cancer, which
is not subject to the high genetic variabil-
ity of tumor cells and may therefore be
more easily targeted. How the altered O,
metabolism of cancer could be used ther-
apeutically to kill tumor cells selectively
is discussed in the following section.

TARGETING THE ALTERED OXYGEN
METABOLISM OF TUMOR CELLS FOR THE
TREATMENT OF CANCER

Tumor cells and normal cells metabo-
lize O, differently; this difference could
be exploited to target tumor cells selec-
tively (Figure 4). Normal cells have full
oxphos capacity, low production of H,0,
and glycolysis inhibition in the presence
of O,. Normal cells do not need to main-
tain high glycolytic activity to ensure
their survival. Cancer cells have an alter-
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Figure 4. Utility of the altered oxygen metabolism of cancer cells to selectively kill them.
Cancer cells and normal cells metabolize oxygen differently. Because the basal levels of
H,O, are higher in cancer cells than in normal cells, a specific increase in the concentra-
fions of H,O, may lead to cyfotoxic concentrations in cancer cells but not in normal cells.
In addition, because the activation of glycolysis in cancer cells is essential to prevent cell
death induced by ATP depletion and H,O, accumulation, the attenuation of glycolysis in
cancer cells can induce their death. Normal cells would be less affected by this strategy,
because they do not need to have increased glycolytic rates to ensure their survival. See
text for further details. Dotted lines indicate that the pathway or process is repressed.
Bolded lines indicate that the process is activated or that the levels of the molecule are

increased.
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ation in the metabolism of O, (dysoxic
metabolism), which is associated with
oxphos repression, increased production
of H,0, and increased glycolytic activity.
The high glycolytic activity of cancer
cells is essential for their survival, be-
cause it prevents cell death induced by
ATP depletion and H,0O, accumulation.
The dysoxic metabolism of cancer cells
can be exploited to kill cancer cells selec-
tively by increasing the cellular levels of
H,O, and/or by attenuating glycolysis.
These effects could be achieved by the
use of prooxidant agents and glycolysis
inhibitors, alone or in combination.

Selective Killing of Cancer Cells by
H,O, and Prooxidant Agents

Recent data suggest that oxidative
stress may play a role in the anticancer
activity of many chemotherapeutic
agents commonly used in cancer treat-
ment, including paclitaxel, cisplatin, dox-
orubicin, arsenic trioxide, bortezomib,
procarbazine and etoposide (87-101). For
instance, although it has been known for
many years that the microtubule protein
tubulin is the therapeutic target for pacli-
taxel (taxol), recent experiments have
shown that H,O, plays an important role
in paclitaxel-induced cancer cell death
(87,89). The role of ROS in the activity of
many anticancer agents is increasingly
being acknowledged, and the induction
of oxidative stress by prooxidant agents
is emerging as an attractive anticancer
strategy (36,94,99,102-106).

H,0, seems to be a key player in ox-
idative stress—induced cancer cell death.
Many anticancer agents, such as pacli-
taxel, doxorubicin and arsenic trioxide,
produce H,0, (87,90,92), and H,O, is
known to be an efficient inducer of cell
death in cancer cells (36,93,107). Interest-
ingly, cancer cells seem more susceptible
to H,O,-induced cell death than nonma-
lignant cells (108-110). Investigating sev-
eral cancer and normal cell lines, Chen et
al. (108) observed that high concentra-
tions of ascorbic acid selectively killed
cancer cells and that this effect was medi-
ated by H,0O,. They showed, for instance,
that a concentration of 50 umol/L H,0,

induced a higher percentage of cell
death in Burkitt lymphoma cells than

250 umol/L in normal lymphocytes and
normal monocytes (108). In vitro and in
vivo data indicate that tumor cells pro-
duce higher concentrations of H,O, than
their normal counterparts (49-53). These
data, and the fact that there is a threshold
of H,0, above which cells cannot sur-
vive, may explain why specific concentra-
tions of H,0, induce selective killing of
cancer cells (36). Overall, evidence sug-
gests that increasing the levels of H,0, in
cancer cells by using prooxidant agents
may be an important therapeutic strategy.
The concentration of a prooxidant agent
required to generate levels of H,O, that
kill cancer cells but not normal cells
could be determined in cell culture exper-
iments. Then, by using an appropriate
route of administration, such concentra-
tions should be achieved in vivo to ob-
serve a selective antitumor effect.

Selective Killing of Cancer Cells by
Glycolysis Inhibition

The increased glycolytic activity of
cancer cells seems to be important for
keeping adequate energy levels in these
cells. Xu et al. (111) observed that the in-
hibition of glycolysis severely depleted
ATP in cancer cells and induced cell
death, especially in cancer cells with mi-
tochondrial respiration defects. The de-
pendence of cancer cells on glycolytic en-
ergy seems to increase as malignant
transformation occurs (69). It has been
proposed that this increased dependence
on glycolysis for energy generation is an
important metabolic difference between
normal and malignant cells that may
serve for developing therapeutic strate-
gies to preferentially kill cancer cells
(44,112,113). Several glycolysis inhibitors
have shown anticancer effects (for exam-
ple, 2-deoxy-D-glucose, lonidamine,
3-bromopyruvate and dichloroacetate)
and some of them have entered the clini-
cal trial stage of investigation (37,44,112,
114). For example, it has been shown that
dichloroacetate, a known glycolysis in-
hibitor that has been used in humans for
decades in the treatment of lactic acidosis
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and inherited mitochondrial diseases, in-
duced marked anticancer effects in mice
(115). The authors found that dichloroac-
etate in the drinking water at clinically
relevant doses for up to 3 months pre-
vented and reversed tumor growth in
vivo, without apparent toxicity and with-
out affecting hemoglobin, transaminase
or creatinine levels. They concluded that
the ease of delivery, selectivity and effec-
tiveness of dichloroacetate make this
agent an attractive candidate for cancer
therapy, one that can be rapidly trans-
lated into phase II-III clinical trials (115).
Other strategies could be used to inhibit
or exploit the increased glycolytic activ-
ity of cancer cells. Because an increase in
the activity of the Na'/K"-ATPase pump
is associated with the activation of gly-
colysis (116,117), the inhibition of this
pump (for example, by cardiac glyco-
sides) may result in the inhibition of gly-
colysis and the selective killing of cancer
cells (113,118). The activation of glycoly-
sis is known to increase the concentra-
tion of protons in the cytosol. These pro-
tons must be extruded to prevent
acid-induced cell death. The inhibition of
the cellular systems involved in the ex-
trusion of protons in cancer cells may
also lead to the selective killing of cancer
cells (119).

Combination of Prooxidant Agents
with Glycolysis Inhibitors for
Anticancer Therapy

Although ROS can induce cancer cell
death, tumor cells are known to develop
mechanisms that prevent ROS from
reaching cytotoxic levels. The glu-
tathione and thioredoxin antioxidant
systems are crucial for detoxifying ROS.
These antioxidant systems are activated
in cancer cells and play an important
role in the development of resistance to
many anticancer agents (120-126). Like-
wise, although the inhibition of glycoly-
sis is an attractive anticancer strategy, in
vivo experiments suggest that the inhibi-
tion of glycolysis may not be sufficient
to induce potent anticancer effects. Ac-
cordingly, although the glycolysis in-
hibitor 2-deoxy-D-glucose is an efficient
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inducer of cell death in vitro (127), its an-
ticancer in vivo activity is not very high
when it is used as a single agent. The an-
ticancer activity of 2-deoxy-D-glucose
has been explored in combination with
chemotherapeutic drugs and radiation,
and some of these combinations have
entered clinical trials (44,112,128-132).

Prooxidant agents could be combined
with glycolysis inhibitors to maximize
their anticancer activity. Evidence indi-
cates that prooxidant agents can increase
the cellular levels of H,0, and that gly-
colysis inhibitors can reduce the capacity
of cells to detoxify H,O,. Experimental
data have shown that malignant cells are
more susceptible to glucose deprivation
than nontransformed cells, and that an
increase in the levels of H,0, may medi-
ate the cytotoxic effect induced by glu-
cose deprivation (53,133-135). Two possi-
ble mechanisms may explain why the
activation of glycolysis performs an im-
portant function in protecting tumor cells
from H,O,-induced cell death. First, the
activation of glycolysis increases the for-
mation of pyruvate, which is an efficient
scavenger of H,0, (136-139). Second,
glucose metabolism through the pentose
phosphate pathway regenerates NADPH
from NADP" in a reaction in which
glucose-6-phosphate is converted into
6-phosphogluconolactone by the enzyme
glucose-6-phosphate dehydrogenase. The
regeneration of NADPH is required for
H,O, detoxification through the glu-
tathione peroxidase/ glutathione reduc-
tase system and through the thioredoxin
peroxidase / thioredoxin reductase sys-
tem (134,140,141) (Figure 5).

CONCLUSIONS

Cancer kills more than six million peo-
ple worldwide every year (142). The
mortality rate of this disease has not
changed much in the past few decades
even in developed countries such as the
United States (29). The small decreases
observed in recent years in some types of
cancer (29) are not attributable only to
better therapies, but also to the imple-
mentation of prevention and early detec-
tion campaigns. The goal of these cam-
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paigns is to make people aware that
many cancers can be prevented by fol-
lowing several guidelines, and that can-
cer therapy is effective when this disease
is detected early (30,31). Despite these
campaigns, many cancers are still diag-
nosed when cells from a primary tumor
have already metastasized to other parts
of the body. At this stage of disease,
tumor cells are no longer localized and
can no longer be eliminated by surgery
or radiotherapy. The main form of treat-
ment at this point is chemotherapy,
which consists of delivering drugs sys-
temically so that they can reach and kill
the tumor cells. But most of these drugs
are toxic to both tumor and normal cells,
cause severe side effects in patients and,
therefore, need to be used at suboptimal
levels. The low efficacy of chemotherapy
in patients with advanced cancers is re-
flected in the low 5-year survival rates
observed in these patients (29). For in-
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stance, cancer statistics show that the
most commonly diagnosed cancer in the
world is lung cancer (142), that approxi-
mately 50% of patients diagnosed with
lung cancer have distant metastasis (29)
and that only 3% of these patients man-
age to survive more than 5 years (29).
The low efficacy of cancer therapy for
the treatment of patients with metastasis
makes the development of novel thera-
peutic approaches necessary.

A novel therapeutic approach has
emerged strongly in recent years. This
approach seeks to attack the tumor cells
selectively and is based on understand-
ing of the differences between tumor
cells and nonmalignant cells. It has been
known for many years that tumor cells
have genetic alterations and much re-
search has been done to identify these al-
terations. Recent analyses of human can-
cers have revealed, however, that the
genetic defects of tumor cells are much



more numerous and unstable than ex-
pected (12,13). In addition, the genetic al-
terations of tumor cells are not the same
in different types of cancer or even in
different people with the same type of
cancer. Given these circumstances it will
probably be very difficult to develop fu-
ture gene-based therapies that may be
useful in a wide range of patients with
cancer (12,20,21). Despite the complexity
of the cancer genome, much research is
devoted to characterizing the genetic
profile of tumors to rationalize and per-
sonalize cancer therapy (22-24).

An alternative approach has been dis-
cussed in this review. In addition to build-
ing up a complex set of DNA changes, ev-
idence suggests that the development of
any cancer requires that tumor cells ac-
quire an alteration in the metabolism of
oxygen. Interestingly, this alteration in the
metabolism of oxygen can make cancer
cells vulnerable to therapeutic interven-
tion. Their increased basal levels of H,0,
and their higher dependence on glycoly-
sis for their survival make cancer cells
more susceptible than normal cells to
treatment with prooxidant agents and
glycolysis inhibitors. Because this alter-
ation in the metabolism of oxygen seems
to be a common feature of tumor cells,
this therapeutic approach could be used
for the treatment of a wide range of pa-
tients with cancer. Future research will re-
veal whether this alternative approach
will be sufficient to increase the survival
of patients with advanced cancers, or
whether it will be necessary to use it in
combination with traditional chemother-
apy and/or novel targeted therapies.

DISCLOSURE

The authors declare that they have no
competing interests as defined by Molecu-
lar Medicine, or other interests that might
be perceived to influence the results and
discussion reported in this paper.

REFERENCES

1. Nature milestones in cancer. (2006) Nat. Rev. Can-
cer. 6:58-9.

2. Nordling CO. (1953) A new theory on cancer-
inducing mechanism. Br. J. Cancer. 7:68-72.

3. Fardon JC. (1953) A reconsideration of the

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

somatic mutation theory of cancer in the light of
some recent developments. Science. 117:441-5.
Armitage P, Doll R. (1954) The age distribution of
cancer and a multi-stage theory of carcinogene-
sis. Br. J. Cancer. 8:1-12.

Nowell PC. (1976) The clonal evolution of tumor
cell populations. Science. 194:23-8.

Fearon ER, Vogelstein B. (1990) A genetic model
for colorectal tumorigenesis. Cell. 61:759-67.
Reddy EP, Reynolds RK, Santos E, Barbacid M.
(1982) A point mutation is responsible for the ac-
quisition of transforming properties by the T24
human bladder carcinoma oncogene. Nature.
300:149-52.

Parada LF, Tabin CJ, Shih C, Weinberg RA. (1982)
Human EJ bladder carcinoma oncogene is homo-
logue of Harvey sarcoma virus ras gene. Nature.
297:474-8.

Goldfarb M, Shimizu K, Perucho M, Wigler M.
(1982) Isolation and preliminary characterization
of a human transforming gene from T24 bladder
carcinoma cells. Nature. 296:404-9.

Bishop JM. (1987) The molecular genetics of can-
cer. Science. 235:305-11.

Stanbridge EJ. (1990) Identifying tumor suppres-
sor genes in human colorectal cancer. Science.
247:12-3.

Folkman J, Hahnfeldt P, Hlatky L. (2000) Cancer:
looking outside the genome. Nat. Rev. Mol. Cell
Biol. 1:76-9.

Stoler DL, et al. (1999) The onset and extent of ge-
nomic instability in sporadic colorectal tumor
progression. Proc. Natl. Acad. Sci. U. S. A.
96:15121-6.

Tacobuzio-Donahue CA. (2009) Epigenetic
changes in cancer. Annu. Rev. Pathol. 4:229-49.
Prehn RT. (1994) Cancers beget mutations versus
mutations beget cancers. Cancer Res. 54:5296-300.
Jaffe LF. (2003) Epigenetic theories of cancer initi-
ation. Adv. Cancer Res. 90:209-30.

Rasnick D, Duesberg PH. (1999) How aneu-
ploidy affects metabolic control and causes can-
cer. Biochem. ]. 340:621-30.

Rajagopalan H, Lengauer C. (2004) Aneuploidy
and cancer. Nature. 432:338-41.

Hanahan D, Weinberg RA. (2000) The hallmarks
of cancer. Cell. 100:57-70.

Hahn WC, Weinberg RA. (2002) Rules for mak-
ing human tumor cells. N. Engl. ]. Med.
347:1593-603.

Vogelstein B, Kinzler KW. (2004) Cancer genes and
the pathways they control. Nat. Med. 10:789-99.
Garman KS, Nevins JR, Potti A. (2007) Genomic
strategies for personalized cancer therapy. Hum.
Mol. Genet. 16:R226-32.

van't Veer L], Bernards R. (2008) Enabling per-
sonalized cancer medicine through analysis of
gene-expression patterns. Nature. 452:564~70.
Hayden EC. (2009) Personalized cancer therapy
gets closer. Nature. 458:131-2.

Ma WW, Adjei AA. (2009) Novel agents on the
horizon for cancer therapy. CA Cancer . Clin.
59:111-37.

MOL MED 16(3-4)144-153, MARCH-APRIL 2010 |

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

REVIEW ARTICLE

Druker BJ, et al. (2001) Efficacy and safety of a
specific inhibitor of the BCR-ABL tyrosine kinase
in chronic myeloid leukemia. N. Engl. |. Med.
344:1031-7.

Hehlmann R, Hochhaus A, Baccarani M. (2007)
Chronic myeloid leukaemia. Lancet. 370:342-50.
Melo JV, Barnes DJ. (2007) Chronic myeloid
leukaemia as a model of disease evolution in
human cancer. Nat. Rev. Cancer. 7:441-53.

Jemal A, et al. (2009) Cancer statistics, 2009. CA
Cancer J. Clin. 59:225-49.

Kushi LH, et al. (2006) American Cancer Society
Guidelines on Nutrition and Physical Activity for
cancer prevention: reducing the risk of cancer
with healthy food choices and physical activity.
CA Cancer ]. Clin. 56:254-81.

Smith RA, Cokkinides V, Eyre HJ. (2006) Ameri-
can Cancer Society guidelines for the early detec-
tion of cancer, 2006. CA Cancer ]. Clin. 56:11-25.
Lopez-Lazaro M. (2006) HIF-1: Hypoxia-in-
ducible factor or dysoxia-inducible factor? FASEB
J. 20:828-32.

Lopez-Lazaro M. (2006) Does hypoxia really con-
trol tumor growth? Cell Oncol. 28:327-9.
Lopez-Lazaro M. (2007) Why do tumors metasta-
size? Cancer Biol. Ther. 6:141-4.

Lopez-Lazaro M. (2007) Excessive superoxide
anion generation plays a key role in carcinogene-
sis. Int. ]. Cancer. 120:1378-80.

Lopez-Lazaro M. (2007) Dual role of hydrogen
peroxide in cancer: possible relevance to cancer
chemoprevention and therapy. Cancer Lett.
252:1-8.

Lopez-Lazaro M. (2008) The Warburg effect: why
and how do cancer cells activate glycolysis in the
presence of oxygen? Anticancer Agents Med.
Chem. 8:305-12.

Lopez-Lazaro M. (2009) Role of oxygen in cancer:
looking beyond hypoxia. Anticancer Agents Med.
Chem. 9:517-25.

Mathupala SP, Ko YH, Pedersen PL. (2009) Hex-
okinase-2 bound to mitochondria: cancer’s sty-
gian link to the “Warburg Effect” and a pivotal
target for effective therapy. Semin. Cancer Biol.
19:17-24.

Chesney J, et al. (1999) An inducible gene prod-
uct for 6-phosphofructo-2-kinase with an AU-
rich instability element: role in tumor cell glycol-
ysis and the Warburg effect. Proc. Natl. Acad. Sci.
U. S. A. 96:3047-52.

Christofk HR, et al. (2008) The M2 splice isoform
of pyruvate kinase is important for cancer me-
tabolism and tumour growth. Nature. 452:230-3.
Gatenby RA, Gillies R]. (2004) Why do cancers
have high aerobic glycolysis? Nat. Rev. Cancer.
4:891-9.

Warburg O. (1956) On the origin of cancer cells.
Science. 123:309-14.

Chen Z, Lu W, Garcia-Prieto C, Huang P. (2007)
The Warburg effect and its cancer therapeutic im-
plications. J. Bioenerg. Biomembr. 39:267-74.
Vander Heiden MG, Cantley LC, Thompson CB.
(2009) Understanding the Warburg effect: the

LOPEZ-LAZARO | 151



NEW VIEW OF CARCINOGENESIS AND ALTERNATIVE APPROACH TO THERAPY

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

152 |

metabolic requirements of cell proliferation. Sci-
ence. 324:1029-33.

Isidoro A, et al. (2004) Alteration of the bioener-
getic phenotype of mitochondria is a hallmark of
breast, gastric, lung and oesophageal cancer.
Biochem. ]. 378:17-20.

Unwin RD, et al. (2003) Proteomic changes in
renal cancer and co-ordinate demonstration of
both the glycolytic and mitochondrial aspects of
the Warburg effect. Proteomics. 3:1620-32.
Matoba S, et al. (2006) p53 regulates mitochondr-
ial respiration. Science. 312:1650-3.

Szatrowski TP, Nathan CF. (1991) Production of
large amounts of hydrogen peroxide by human
tumor cells. Cancer Res. 51:794-8.

Burdon RH. (1995) Superoxide and hydrogen
peroxide in relation to mammalian cell prolifera-
tion. Free Radic. Biol. Med. 18:775-94.

Zieba M, et al. (2000) Comparison of hydrogen
peroxide generation and the content of lipid per-
oxidation products in lung cancer tissue and pul-
monary parenchyma. Respir. Med. 94:800-5.

Lim SD, et al. (2005) Increased Nox1 and hydro-
gen peroxide in prostate cancer. Prostate. 62:200-7.
Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW,
Spitz DR. (2009) Increased levels of superoxide
and H202 mediate the differential susceptibility
of cancer cells versus normal cells to glucose
deprivation. Biochem. ]. 418:29-37.

Semenza GL. (2003) Targeting HIF-1 for cancer
therapy. Nat. Rev. Cancer. 3:721-32.

Semenza GL. (2007) Evaluation of HIF-1 inhibitors
as anticancer agents. Drug Discov. Today. 12:853-9.
Lopez-Lazaro M. (2006) Hypoxia-inducible factor
1 as a possible target for cancer chemopreven-
tion. Cancer Epidemiol. Biomarkers Prev. 15:2332-5.
Chandel NS, et al. (2000) Reactive oxygen species
generated at mitochondrial complex III stabilize
hypoxia-inducible factor-lalpha during hypoxia:
a mechanism of O2 sensing. J. Biol. Chem.
275:25130-8.

Lu H, Forbes RA, Verma A. (2002) Hypoxia-
inducible factor 1 activation by aerobic glycoly-
sis implicates the Warburg effect in carcinogene-
sis. J. Biol. Chem. 277:23111-5.

Cerutti PA. (1985) Prooxidant states and tumor
promotion. Science. 227:375-81.

Klaunig JE, Kamendulis LM. (2004) The role of
oxidative stress in carcinogenesis. Annu. Rev.
Pharmacol. Toxicol. 44:239-67.

Okamoto M, Kawai K, Reznikoff CA, Oyasu R.
(1996) Transformation in vitro of a nontumori-
genic rat urothelial cell line by hydrogen perox-
ide. Cancer Res. 56:4649-53.

Suh YA, et al. (1999) Cell transformation by the
superoxide-generating oxidase Mox1. Nature.
401:79-82.

Arnold RS, et al. (2001) Hydrogen peroxide medi-
ates the cell growth and transformation caused
by the mitogenic oxidase Nox1. Proc. Natl. Acad.
Sci. U. S. A. 98:5550-5.

Church SL, et al. (1993) Increased manganese su-
peroxide dismutase expression suppresses the

LOPEZ-LAZARO |

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

malignant phenotype of human melanoma cells.
Proc. Natl. Acad. Sci. U. S. A. 90:3113-7.

Safford SE, Oberley TD, Urano M, St Clair DK.
(1994) Suppression of fibrosarcoma metastasis by
elevated expression of manganese superoxide
dismutase. Cancer Res. 54:4261-5.

Yan T, Oberley LW, Zhong W, St Clair DK. (1996)
Manganese-containing superoxide dismutase
overexpression causes phenotypic reversion in
SV40-transformed human lung fibroblasts. Can-
cer Res. 56:2864-71.

Zhang Y, Zhao W, Zhang HJ, Domann FE, Ober-
ley LW. (2002) Overexpression of copper zinc su-
peroxide dismutase suppresses human glioma
cell growth. Cancer Res. 62:1205-12.

Hyoudou K, ef al. (2004) Inhibition of metastatic
tumor growth in mouse lung by repeated admin-
istration of polyethylene glycol-conjugated cata-
lase: quantitative analysis with firefly luciferase-
expressing melanoma cells. Clin. Cancer Res.
10:7685-91.

Ramanathan A, Wang C, Schreiber SL. (2005)
Perturbational profiling of a cell-line model of tu-
morigenesis by using metabolic measurements.
Proc. Natl. Acad. Sci. U. S. A. 102:5992-7.
Ishikawa K, et al. (2008) ROS-generating mito-
chondrial DNA mutations can regulate tumor
cell metastasis. Science. 320:661—4.

Irani K, et al. (1997) Mitogenic signaling medi-
ated by oxidants in Ras-transformed fibroblasts.
Science. 275:1649-52.

Vafa O, et al. (2002) c-Myc can induce DNA dam-
age, increase reactive oxygen species, and miti-
gate p53 function: a mechanism for oncogene-in-
duced genetic instability. Mol. Cell. 9:1031-44.
Sattler M, et al. (2000) The BCR/ ABL tyrosine ki-
nase induces production of reactive oxygen species
in hematopoietic cells. J. Biol. Chem. 275:24273-8.
Kopnin PB, Agapova LS, Kopnin BP, Chumakov
PM. (2007) Repression of sestrin family genes
contributes to oncogenic Ras-induced reactive
oxygen species up-regulation and genetic insta-
bility. Cancer Res. 67:4671-8.

Park S, You X, Imlay JA. (2005) Substantial DNA
damage from submicromolar intracellular hydrogen
peroxide detected in Hpx- mutants of Escherichia
coli. Proc. Natl. Acad. Sci. U. S. A. 102:9317-22.
Radisky DC, et al. (2005) Raclb and reactive oxy-
gen species mediate MMP-3-induced EMT and
genomic instability. Nature. 436:123-7.

Dayal D, Martin SM, Limoli CL, Spitz DR. (2008)
Hydrogen peroxide mediates the radiation-in-
duced mutator phenotype in mammalian cells.
Biochem. ]. 413:185-91.

Jackson AL, Loeb LA. (2000) Microsatellite insta-
bility induced by hydrogen peroxide in Es-
cherichia coli. Mutat. Res. 447:187-98.

Kovacic P, Jacintho JD. (2001) Mechanisms of car-
cinogenesis: focus on oxidative stress and elec-
tron transfer. Curr. Med. Chem. 8:773-96.
Guengerich FP, Shimada T. (1998) Activation of
procarcinogens by human cytochrome P450 en-
zymes. Mutat. Res. 400:201-13.

MOL MED 16(3-4)144-153, MARCH-APRIL 2010

81.

82.

83.

84.

85.

86.

87.

88

89.

90.

91.

92.

93.

94.

95.

Zangar RC, Davydov DR, Verma S. (2004) Mech-
anisms that regulate production of reactive oxy-
gen species by cytochrome P450. Toxicol. Appl.
Pharmacol. 199:316-31.

Papandreou I, Cairns RA, Fontana L, Lim AL,
Denko NC. (2006) HIF-1 mediates adaptation to
hypoxia by actively downregulating mitochondr-
ial oxygen consumption. Cell Metab. 3:187-97.
Semenza GL. (2007) HIF-1 mediates the Warburg
effect in clear cell renal carcinoma. J. Bioenerg.
Biomembr. 39:231-4.

Reshkin §J, et al. (2000) Na+/H+ exchanger-
dependent intracellular alkalinization is an early
event in malignant transformation and plays an
essential role in the development of subsequent
transformation-associated phenotypes. FASEB .
14:2185-97.

Harguindey S, Orive G, Luis PJ, Paradiso A,
Reshkin SJ. (2005) The role of pH dynamics and
the Na(+)/H(+) antiporter in the etiopathogene-
sis and treatment of cancer. Two faces of the
same coin-one single nature. Biochim. Biophys.
Acta. 1756:1-24.

Simchowitz L. (1985) Intracellular pH modulates
the generation of superoxide radicals by human
neutrophils. J. Clin. Invest. 76:1079-89.
Alexandre J, et al. (2006) Accumulation of hydro-
gen peroxide is an early and crucial step for pa-
clitaxel-induced cancer cell death both in vitro
and in vivo. Int. ]. Cancer 119:41-8.

. Alexandre J, et al. (2006) Improvement of the

therapeutic index of anticancer drugs by the su-
peroxide dismutase mimic mangafodipir. J. Natl.
Cancer Inst. 98:236-44.

Alexandre J, Hu Y, Lu W, Pelicano H, Huang P.
(2007) Novel action of paclitaxel against cancer
cells: bystander effect mediated by reactive oxy-
gen species. Cancer Res. 67:3512-7.

Jing Y, Dai J, Chalmers-Redman RM, Tatton WG,
Waxman S. (1999) Arsenic trioxide selectively in-
duces acute promyelocytic leukemia cell apopto-
sis via a hydrogen peroxide-dependent pathway.
Blood. 94:2102-11.

Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima
M, Kawanishi S. (2005) Mechanism of apoptosis
induced by doxorubicin through the generation
of hydrogen peroxide. Life Sci. 76:1439-53.
Ubezio P, Civoli F. (1994) Flow cytometric detec-
tion of hydrogen peroxide production induced
by doxorubicin in cancer cells. Free Radic. Biol.
Med. 16:509-16.

Ikeda K, et al. (1999) Involvement of hydrogen
peroxide and hydroxyl radical in chemically in-
duced apoptosis of HL-60 cells. Biochem. Pharma-
col. 57:1361-5.

Fang J, Nakamura H, Iyer AK. (2007) Tumor-
targeted induction of oxystress for cancer ther-
apy. J. Drug Target. 15:475-86.

Simizu S, Takada M, Umezawa K, Imoto M.
(1998) Requirement of caspase-3(-like) protease-
mediated hydrogen peroxide production for
apoptosis induced by various anticancer drugs.
J. Biol. Chem. 273:26900-7.



96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

Gorman A, McGowan A, Cotter TG. (1997) Role
of peroxide and superoxide anion during tu-
mour cell apoptosis. FEBS Lett. 404:27-33.

Ling YH, Liebes L, Zou Y, Perez-Soler R. (2003)
Reactive oxygen species generation and mito-
chondrial dysfunction in the apoptotic response
to Bortezomib, a novel proteasome inhibitor, in
human H460 non-small cell lung cancer cells.

J. Biol. Chem. 278:33714-23.

Perez-Galan D, et al. (2006) The proteasome in-
hibitor bortezomib induces apoptosis in mantle-
cell lymphoma through generation of ROS and
Noxa activation independent of p53 status.
Blood. 107:257-64.

Renschler MF. (2004) The emerging role of reac-
tive oxygen species in cancer therapy. Eur. .
Cancer. 40:1934-40.

Oh SY, et al. (2007) Selective cell death of onco-
genic Akt-transduced brain cancer cells by
etoposide through reactive oxygen species me-
diated damage. Mol. Cancer Ther. 6:2178-87.
Doroshow JH. (1986) Role of hydrogen peroxide
and hydroxyl radical formation in the killing of
Ehrlich tumor cells by anticancer quinones.
Proc. Natl. Acad. Sci. U. S. A. 83:4514-8.
Pelicano H, Carney D, Huang P. (2004) ROS
stress in cancer cells and therapeutic implica-
tions. Drug Resist. Updat. 7:97-110.

Fruehauf JP, Meyskens FL, Jr. (2007) Reactive
oxygen species: a breath of life or death? Clin.
Cancer Res. 13:789-94.

Schumacker PT. (2006) Reactive oxygen species
in cancer cells: live by the sword, die by the
sword. Cancer Cell. 10:175-6.

Wondrak GT. (2009) Redox-directed cancer ther-
apeutics: molecular mechanisms and opportu-
nities. Antioxid. Redox. Signal. 11:3013-69.

Engel RH, Evens AM. (2006) Oxidative stress
and apoptosis: a new treatment paradigm in
cancer. Front. Biosci. 11:300-12.

Hirpara JL, Clement MV, Pervaiz S. (2001) Intra-
cellular acidification triggered by mitochondr-
ial-derived hydrogen peroxide is an effector
mechanism for drug-induced apoptosis in
tumor cells. J. Biol. Chem. 276:514-21.

Chen Q, et al. (2005) Pharmacologic ascorbic
acid concentrations selectively kill cancer cells:
action as a pro-drug to deliver hydrogen perox-
ide to tissues. Proc. Natl. Acad. Sci. U. S. A.
102:13604-9.

Maeda H, et al. (2004) Effective treatment of ad-
vanced solid tumors by the combination of ar-
senic trioxide and L-buthionine-sulfoximine.
Cell Death. Differ. 11:737-46.

Djavaheri-Mergny M, Wietzerbin ], Besancon F.
(2003) 2-Methoxyestradiol induces apoptosis in
Ewing sarcoma cells through mitochondrial hy-
drogen peroxide production. Oncogene. 22:2558-67.
Xu RH, et al. (2005) Inhibition of glycolysis in
cancer cells: a novel strategy to overcome drug
resistance associated with mitochondrial respi-
ratory defect and hypoxia. Cancer Res. 65:613-21.
Pelicano H, Martin DS, Xu RH, Huang P. (2006)

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

Glycolysis inhibition for anticancer treatment.
Oncogene. 25:4633-46.

Lopez-Lazaro M. (2007) Digitoxin as an anti-
cancer agent with selectivity for cancer cells:
possible mechanisms involved. Expert. Opin.
Ther. Targets. 11:1043-53.

Gatenby RA, Gillies R]. (2007) Glycolysis in
cancer: a potential target for therapy. Int. J.
Biochem. Cell Biol. 39:1358-66.

Bonnet S, et al. (2007) A mitochondria-K+ chan-
nel axis is suppressed in cancer and its normal-
ization promotes apoptosis and inhibits cancer
growth. Cancer Cell. 11:37-51.

Paul RJ, Bauer M, Pease W. (1979) Vascular
smooth muscle: aerobic glycolysis linked to
sodium and potassium transport processes. Sci-
ence. 206:1414-6.

James JH, et al. (1996) Linkage of aerobic glycol-
ysis to sodium-potassium transport in rat skele-
tal muscle: implications for increased muscle
lactate production in sepsis. J. Clin. Invest.
98:2388-97.

Lopez-Lazaro M, et al. (2005) Digitoxin inhibits
the growth of cancer cell lines at concentrations
commonly found in cardiac patients. J. Nat.
Prod. 68:1642-5.

Harguindey S, Arranz JL, Wahl ML, Orive G,
Reshkin §J. (2009) Proton transport inhibitors as
potentially selective anticancer drugs. Anti-
cancer Res. 29:2127-36.

Estrela JM, Ortega A, Obrador E. (2006) Glu-
tathione in cancer biology and therapy. Crit Rev.
Clin. Lab Sci. 43:143-81.

Tew KD. (1994) Glutathione-associated enzymes
in anticancer drug resistance. Cancer Res.
54:4313-20.

Yang P, Ebbert JO, Sun Z, Weinshilboum RM.
(2006) Role of the glutathione metabolic path-
way in lung cancer treatment and prognosis: a
review. J. Clin. Oncol. 24:1761-9.

Zhang K, Mack P, Wong KP. (1998) Glutathione-
related mechanisms in cellular resistance to an-
ticancer drugs. Int. . Oncol. 12:871-82.

Arner ES, Holmgren A. (2006) The thioredoxin
system in cancer. Semin. Cancer Biol. 16:420-6.
Nonn L, Berggren M, Powis G. (2003) Increased
expression of mitochondrial peroxiredoxin-3
(thioredoxin peroxidase-2) protects cancer cells
against hypoxia and drug-induced hydrogen
peroxide-dependent apoptosis. Mol. Cancer Res.
1:682-9.

Powis G, Mustacich D, Coon A. (2000) The role
of the redox protein thioredoxin in cell growth
and cancer. Free Radic. Biol. Med. 29:312-22.

Aft RL, Zhang FW, Gius D. (2002) Evaluation of
2-deoxy-D-glucose as a chemotherapeutic
agent: mechanism of cell death. Br. J. Cancer.
87:805-12.

Maschek G, et al. (2004) 2-deoxy-D-glucose in-
creases the efficacy of adriamycin and paclitaxel
in human osteosarcoma and non-small cell lung
cancers in vivo. Cancer Res. 64:31-4.

Coleman MG, et al. (2008) 2-deoxy-D-glucose

MOL MED 16(3-4)144-153, MARCH-APRIL 2010 |

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

REVIEW ARTICLE

causes cytotoxicity, oxidative stress, and ra-
diosensitization in pancreatic cancer. Free Radic.
Biol. Med. 44:322-31.

Lin X, et al. (2003) 2-Deoxy-D-glucose-induced
cytotoxicity and radiosensitization in tumor
cells is mediated via disruptions in thiol metab-
olism. Cancer Res. 63:3413-7.

Simons AL, Ahmad IM, Mattson DM, Dornfeld
KJ, Spitz DR. (2007) 2-Deoxy-D-glucose com-
bined with cisplatin enhances cytotoxicity via
metabolic oxidative stress in human head and
neck cancer cells. Cancer Res. 67:3364-70.
Hernlund E, et al. (2008) Potentiation of chemo-
therapeutic drugs by energy metabolism in-
hibitors 2-deoxyglucose and etomoxir. Int. J.
Cancer. 123:476-83.

Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee
YJ. (2000) Glucose deprivation-induced oxida-
tive stress in human tumor cells: a fundamental
defect in metabolism? Ann. N. Y. Acad. Sci.
899:349-62.

Ahmad 1M, et al. (2005) Mitochondrial O2*- and
H202 mediate glucose deprivation-induced
stress in human cancer cells. J. Biol. Chem.
280:4254-63.

Jelluma N, et al. (2006) Glucose withdrawal in-
duces oxidative stress followed by apoptosis in
glioblastoma cells but not in normal human as-
trocytes. Mol. Cancer Res. 4:319-30.

Nath KA, et al. (1995) alpha-Ketoacids scavenge
H202 in vitro and in vivo and reduce mena-
dione-induced DNA injury and cytotoxicity.
Am. ]. Physiol. 268:C227-36.

Miwa H, Fujii J, Kanno H, Taniguchi N, Aozasa
K. (2000) Pyruvate secreted by human lym-
phoid cell lines protects cells from hydrogen
peroxide mediated cell death. Free Radic. Res.
33:45-56.

Ramakrishnan N, Chen R, McClain DE, Bunger
R. (1998) Pyruvate prevents hydrogen peroxide-
induced apoptosis. Free Radic. Res. 29:283-95.
Salahudeen AK, Clark EC, Nath KA. (1991)
Hydrogen peroxide-induced renal injury. A
protective role for pyruvate in vitro and in
vivo. J. Clin. Invest. 88:1886-93.

Tuttle SW, Varnes ME, Mitchell JB, Biaglow JE.
(1992) Sensitivity to chemical oxidants and radi-
ation in CHO cell lines deficient in oxidative
pentose cycle activity. Int. ]. Radiat. Oncol. Biol.
Phys. 22:671-5.

Averill-Bates DA, Przybytkowski E. (1994) The
role of glucose in cellular defences against cyto-
toxicity of hydrogen peroxide in Chinese ham-
ster ovary cells. Arch. Biochem. Biophys. 312:52-8.
Parkin DM, Bray F, Ferlay J, Pisani P. (2005)
Global cancer statistics, 2002. CA Cancer ]. Clin.
55:74-108.

LOPEZ-LAZARO | 153




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




