
Cancer is a disease of the genome. The classic model 
of carcinogenesis describes multiple, successive clonal 
expansions driven by the accumulation of genomic 
changes or ‘mutations’ that are preferentially selected 
by the tumour environment1,2,3. This traditional pic-
ture of linear cancer genome evolution has become 
more nuanced over the past decade as the research scal-
pel allows ever-sharper prosection of the underlying  
biology (FIG. 1; BOX 1).

Recent advances in sequencing technologies have 
delivered, for the first time, the opportunity to scruti-
nize all expressed genes (‘transcriptomes’), all exons 
(‘exomes’) and whole cancer genomes at base-pair reso-
lution4. A number of different sequencing platforms now 
exist, including pico-titre plate pyrosequencing and liga-
tion-based sequencing. From the viewpoint of under-
standing cancer genome evolution, the key aspect of this 
generation of sequencing technologies is that billions of 
independent sequencing reads are generated in parallel, 
with each read deriving from a single molecule of DNA. 
Thus, albeit with some sampling biases, the data repre-
sent a random sample of DNA molecules (and hence the 
genomes of individual cells) contained in the tumour 
sample. By contrast, the data derived from conventional 
genomic approaches, such as capillary sequencing or 
copy number arrays, are aggregate signals from many 
thousands of DNA molecules (BOX 2). Harnessing the 
attractive statistical properties of massively parallel data 
thus enables us to draw robust inferences about the 
mutational mix of a tumour sample, generating unprec-
edented insights into the fundamental genomic events 
that underlie the development of cancers and the order, 
rate and mechanisms by which they occur5–7.

These approaches have been used to generate com-
prehensive catalogues of somatic mutations by compar-
ing the genomic sequence of DNA taken from a patient’s 
cancer cells to the sequence of their germline DNA7,8. 
In particular, these studies have given an indication of 
the heterogeneity in cancer genome evolution, across 
tumour types, across individuals within a given tumour 
type and even within a single individual’s tumour9,10. 
In this Review, we provide an initial overview of recent 
strategic and methodological developments in cancer 
genomics. Heterogeneity is central to cancer genome 
evolution, and we describe this at the level of cancer 
genes and within individual patients. We consider the 
evidence for the role of different processes, gradual and 
abrupt, by which heterogeneity may arise. Finally, we 
present the evidence for an elevated mutation rate in 
shaping cancer evolution.

Recent strategic and methodological advances
Tumour multi-sampling strategies. With the objective 
of understanding how the cancer genome varies over 
space and time, various groups have carried out studies 
of tumours and their respective non-malignant tissues 
obtained from an individual patient. These approaches 
may be broadly divided into ‘geographical’ and ‘longi-
tudinal’ sampling strategies. ‘Geographical sampling’ 
encompasses those studies that compare multiple sam-
ples from an individual cancer that have been obtained 
at a single point in time. These samples may be derived 
from geographically distinct areas within a single large 
tumour mass and/or may include metastatic deposits in 
lymph nodes or distant organs11,12. ‘Longitudinal sam-
pling’, by contrast, compares samples obtained at different 
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Abstract | The advent of massively parallel sequencing technologies has allowed the 
characterization of cancer genomes at an unprecedented resolution. Investigation of  
the mutational landscape of tumours is providing new insights into cancer genome 
evolution, laying bare the interplay of somatic mutation, adaptation of clones to their 
environment and natural selection. These studies have demonstrated the extent of the 
heterogeneity of cancer genomes, have allowed inferences to be made about the forces 
that act on nascent cancer clones as they evolve and have shown insight into the 
mutational processes that generate genetic variation. Here we review our emerging 
understanding of the dynamic evolution of the cancer genome and of the implications for 
basic cancer biology and the development of antitumour therapy.
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Mutational signatures
Patterns of mutations that are 
characteristic of a type of 
cancer or that are indicative  
of a specific process.

Chromothripsis
A single event that causes 
genome shattering and 
reassembly, resulting in a 
characteristic pattern of 
oscillating copy number and  
up to several hundred genomic 
rearrangements localized to 
one or a few chromosomes.

time points in the life history of a cancer: for example, at 
diagnosis, relapse and metastasis7. A limited number of 
published studies have included samples that are sepa-
rated by both space and time9. The biological question 
posed and the clinical feasibility largely determine the 
sampling strategy.

Single-cell sequencing. Single-cell sequencing is a poten-
tially useful approach towards the study of cancer evolu-
tion and is the ultimate resolution of the multi-sampling 
approach. In proof-of-principle studies, this approach 
has been successfully applied to generate catalogues of 
point mutations in protein-coding regions and copy 
number changes10,13,14. These approaches have a require-
ment for whole-genome amplification of the genome 
of each cell, and this introduces several biases, with 
the potential for both false-positive and false-negative 
mutation calls. For haematological malignancies, in situ 
hybridization techniques allow single cells to be studied 
for cytogenetic abnormalities15, and it is feasible that in 
the future, microfluidic techniques will allow cells to 
be isolated and analysed in one step for solid tumour 
samples as well16,17. The ability to make inferences about 
phylogenetic structure using single-cell sequencing will, 
however, still be fundamentally limited by how repre-
sentative the biopsy sample is of the whole-tumour bulk 
and by how many cells are individually analysed.

Mathematical algorithms. Mathematical models have 
been widely applied in an attempt to unpick the complex 
and multifactorial influences on cancer progression18–20. 

Massively parallel sequencing data are particularly 
amenable to mathematical analysis because they repre-
sent a random sample of DNA molecules, and hence of 
individual cancer cell genomes, within a tumour speci-
men (BOX 2). Statistical algorithms for exploiting these 
properties have been developed, providing important 
insights into the clonal mix of the sample sequenced. For 
example, using the fraction of reads reporting a point 
mutation, the copy number at that locus and the level of 
normal cell contamination, we can work out whether the 
mutation is likely to be clonal or subclonal and whether 
the mutation has been duplicated by a subsequent copy 
number change7,21,22–24. Within a given copy number seg-
ment, this mandates a clear temporal precedence. The 
earliest mutations are those that are subsequently dupli-
cated, followed by those that are clonal but that are pre-
sent on a single copy of the locus and then by those that 
are subclonal. This allows inferences about the relative 
timing of the copy number gain and about the changing 
mutational signatures that are operative in the different 
epochs22,25.

With the exception of more complex processes such 
as chromothripsis (discussed below), genomic rearrange-
ments generally represent simple events (such as dele-
tions or inversions), occurring over the evolutionary time 
course of a cancer. Mathematically, these rearrangements 
can be considered as sequential selections from a known 
library of genomic transformations — remarkably, the 
constraints imposed by the simplicity of the repertoire of 
possible rearrangement types, the genome-wide, allele-
specific copy number data and the observed breakpoints 
mean that even deeply complex clusters of rearrange-
ments can be disentangled to yield both the final 
genomic configuration of segments and the temporal  
order in which the rearrangements occurred26.

Mutations occur in a given genomic context, and this 
can also be exploited to understand cancer evolution. 
In particular, mutations can be ‘phased’ with nearby 
heterozygous germline SNPs, allowing haplotype-
specific analysis of clonal and subclonal mutations24. 
Furthermore, pairs of mutations can be phased relative 
to one another, allowing patterns of branching and sub-
clonal evolution to be delineated5,24 (BOX 2). Although 
such approaches are currently limited to samples with 
hypermutable regions or with a high mutation burden, 
the increasing read lengths coming in future genera-
tions of single-molecule sequencers will vastly expand 
the power of this approach.

The heterogeneous cancer genome
The cancer genome is characterized by heterogene-
ity that is seen across tumour types, among cases of a 
particular tumour type and even within an individual 
cancer. This heterogeneity reflects the action of the twin 
evolutionary forces of variation generation and selec-
tion. The extent of genomic variability is testament to 
the diverse and dynamic nature of these forces.

The heterogeneity of cancer genes. Massively parallel 
sequencing has enabled us to construct nearly com-
prehensive catalogues of every mutation within an 

Figure 1 | The evolution of clonal populations. Cancers are genomically diverse and 
dynamic entities. Unique clones (represented by different coloured bubbles) emerge as 
a consequence of accumulating driver mutations in the progeny of a single most 
recent common ancestor (MRCA) cell. Ongoing linear and branching evolution results 
in multiple simultaneous subclones that may individually be capable of giving rise to 
episodes of disease relapse and metastasis. The dynamic clonal architecture is shaped 
by mutation and competition between subclones in light of environmental selection 
pressures, including those that are exerted by cancer treatments.
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Box 1 | Phylogenetic cancer trees

A phylogenetic tree is a pictorial representation of how a 
tumour is inferred to have evolved. As discussed in the text, 
these inferences can be based on a wide range of molecular 
biology and sampling techniques coupled with existing and 
new bioinformatics algorithms for reconstructing the tree. 
Several key properties of the evolution of a tumour are 
coded in the tree and provide important biological 
information about the genetic diversity of a cancer and 
clonal mix.

All trees have a shared ‘trunk’, which represents the 
complement of mutations shared by all malignant cells 
within the cancer. Because these mutations are fully clonal, 
there must have been a single ancestral cell that carried all 
of these mutations and through which all extant tumour 
cells can trace their lineage; we denote this cell the ‘most 
recent common ancestor’, borrowing the term from 
population genetics. Emergence of this cell initiated the 
final complete selective sweep within the cancer: all clonal 
expansions thereafter are, by definition, incomplete. All 
mutations that occur after the most recent appearance of a 
common ancestor are subclonal.

The length of individual branches (and the trunk) denotes 
the number of mutations that occurs in that lineage: a 
so‑called ‘molecular clock’. If mutation rates per unit time 
were constant, then this would correlate with chronological 
time. However, for many cancers, this assumption is 
probably invalid (as discussed in the text), and molecular 
time is likely to be a poor proxy for chronological time.

The branching structure of the tree captures the number 
of subclonal populations within the cancer samples  
and their genetic relationships. For example, both linear and 
branching patterns of evolution have been described in a 
range of cancers. Linear evolution (panel a of the figure) 
was described in acute myeloid leukaemia (AML) and 
identifies the post‑treatment relapse clone as a direct 
descendant of the major clone. The tree in panel b demonstrates branching evolution and specifically convergent 
evolution, in which the same genetic consequence independently emerges in separate clades of the phylogenetic tree 
highlighted by green boxes containing recurrently mutated genes. Brown circles represent cytogenetically distinct 
populations, and the numbers represent the number of copies of each adjacent gene. Solid lines represent the most likely 
ancestral origin of subclones, whereas dashed lines suggest alternative origins.

As sequencing goes genome‑wide, phylogenies have been constructed for single‑tumour samples that are composed  
of multiple constituent cellular subclones. The identification of tens of thousands of mutations genome‑wide permits the 
delineation of distinct clusters of mutations — these clusters consist of groups of mutations that share similar mutant allele 
frequencies (corrected for local copy number). In the tree in panel c, we present a phylogenetic tree in which the variable 
thicknesses of the branches reflect the numbers of mutations within each distinct mutation ‘cluster’. This gives an indication 
of the patterns of subclonal importance and dominance within the cancer population. Chr, chromosome; ETV6, ETS variant 6; 
F, ETV6–RUNX1 fusion gene; GATA3, GATA‑binding protein 3; IDH2, isocitrate dehydrogenase 2; PAX5, paired box 5; 
PIK3CA, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase, catalytic subunit alpha; NCOR1, nuclear receptor co‑repressor 1; 
MLL3, myeloid/lymphoid or mixed‑lineage leukaemia 3; NPM1, nucleophosmin (nucleolar phosphoprotein B23, numatrin); 
RUNX1, runt‑related transcription factor 1; SMAD4, SMAD family member 4; STOX2, storkhead box 2. Panel a is adapted, 
with permission, from REF. 21 © (2012) Macmillan Publishers Ltd. Panel b is adapted, with permission, from REF. 15 © (2011) 
Macmillan Publishers Ltd. All rights reserved. Panel c is adapted, with permission, from REF. 24 © (2012) Cell Press.
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individual cancer genome at a single point in time6. To 
date, using conventional and newer technologies, almost 
500 cancer genes have been identified27. In a handful of 
cancer types, specific underlying cancer genes are con-
sistently mutated, such as the oncogenic fusion protein 

BCR–ABL in chronic myeloid leukaemia (CML) or 
inactivating mutations in the tumour suppressor gene 
retinoblastoma 1 (RB1) in retinoblastomas28. Specific 
cancer genes have also been implicated in the develop-
ment of the same rare cancer type in different tissues. 

Box 2 | Methodologies for understanding cancer genome evolution
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The existing methods used to hypothesize the order of evolutionary 
events, or phylogeny, derive from molecular genetics. These methods use 
multiple sampling techniques and assume that individuals can be 
isolated in a population. The evolutionary connections between 
organisms are calculated using a range of mathematical models, 
including parsimony, maximum likelihood, Markov chain Monte Carlo 
and Bayesian inference. Cancer genomics has adopted these tools to 
reconstruct the relationships between mixed populations of cells in 
individual cancers10,13–15. This approach is suitable when individual 
subclonal populations in a cancer can be reliably isolated, such as 
through single‑cell sequencing or cytogenetics. A simplified example of 
this is represented in panel a of the figure, in which two different 
mutations result in evolutionary divergence from a presumed most 
recent common ancestor.

However, as illustrated in panel b of the figure, most cancer samples 
consist of mixed populations of normal cells and tumour cells, and 
next‑generation sequencing data therefore provide a composite view of a 
random sample of DNA molecules from these different populations. 
Mutations in the data follow defined probability distributions that are 
dictated by coverage and the underlying allele frequency. There remains 
a paucity of statistical algorithms for analysing these data, but some useful 
techniques have recently been developed, such as mutational clustering, 
using kernel density analysis21 and Bayesian Dirichlet process 
modelling24,107, digital karyotyping26 and phasing adjacent somatic 
mutation pairs or adjacent somatic mutations and germline variants24. The 
phasing technique is summarized in the focus box (panel b).

The above methodologies may be amalgamated to handle the data 
from multi‑site sampling studies that include defined populations that 
are nonetheless genetically heterogeneous7,9,12.
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The oncogenic fusion gene MYB–NFIB, for example, 
drives the development of adenoid cystic carcinomas 
that arise in both breast and salivary tissues29.

These examples, however, remain the exception 
rather than the rule. Most common cancers are associ-
ated with many diverse cancer genes that are mutated at 
a low frequency. One of the most striking observations 
from large cancer databases is the genetic heterogene-
ity between cancers and even within individual can-
cer types. The Cancer Genome Atlas Project analysed 
489 high-grade serous ovarian cancers, and among the 
thousands of somatic mutations identified, only 10 of 
these were recurrently mutated cancer genes, and all 
but TP53 were present in less than 10% of cases. The 
recent genomic analysis of 77 oestrogen-receptor-pos-
itive breast cancers also identified that most recurrent 
mutations occur infrequently, but they do cluster within 
a limited number of cellular pathways that are central to 
tumour cell biology30.

Long-standing evidence indicates that breast cancer 
exhibits heterogeneity in terms of clinical behaviour 
and response to therapy. More recently, the genomic 
diversity underlying this heterogeneity has been docu-
mented25,30–32. For example, identification of a TP53 
mutation in breast cancer correlated with a higher prolif-
eration index before therapy and less dramatic suppres-
sion of proliferation during therapy with an aromatase 
inhibitor30. The conventional subclasses of breast cancers 
are based on histopathological type and grade, immuno-
histochemical analysis of hormone receptors and over-
expression of human epidermal growth factor receptor 2 

(HER2; also known as ERBB2). However, in the past few 
years, these categories have been extended by molecular 
profiling studies that use expression analysis to reclas-
sify breast cancers with unique biological and prognos-
tic features33. These categories, which can be identified 
on gene expression profiles, reflect to some extent the 
underlying genomic profiles of the tumours31, and it will 
be interesting to see how integrative transcriptional and 
genomic studies define this further in the whole-genome 
sequencing era.

The heterogeneity of the mutational landscape. In 
addition to the heterogeneity of cancer genes, there is 
considerable diversity in the nature, number and distri-
bution of mutations within and across different cancer 
histologies25. Recent studies have revealed, for example, 
that the childhood cancers retinoblastoma and medul-
loblastoma contain substantially fewer somatic substitu-
tions than do common adult-onset solid tumours and 
haematological malignancies, such as breast cancer or 
acute myeloid leukaemia (AML)7,34–37. This extends even 
to specific subtypes of tumours — for example, the num-
ber of mutations among individual HER2-positive breast 
cancers differed by a factor of six in a recent study25.

Patterns of structural variants differ across tumour 
types: breast and ovarian cancers show many more 
tandem duplications than other tumour types do38,39; 
pancreatic cancer is characterized by frequent breakage–
fusion–bridge cycles of chromosomal rearrangement12; 
prostate cancer shows balanced chains of rearrange-
ments40,41; and various cancers, especially sarcomas and 
neuroblastomas, demonstrate chromothripsis (discussed 
below)37,42,43. Similarly, patterns of base substitutions 
differ extensively across tumours, depending on DNA 
repair defects and carcinogenic exposures8,44,45. Many 
of the pathways underlying the acquisition of somatic 
mutations in these cancers are poorly understood. For 
example, at least six or seven distinct point mutational 
signatures can be identified in breast cancers, of which 
only one or two can currently be attributed to known 
biological processes25.

It is, in many ways, remarkable that this degree of 
heterogeneity in the routes to cancer can lead to such 
convergent phenotypes. Although detailed genotype–
phenotype studies in the massively parallel sequencing 
era are lacking, it is nonetheless the case that, for exam-
ple, a histologically typical ER-positive breast cancer can 
result from a wide array of different cancer genes that 
have been mutated through many different processes. It 
is also conceivable that diverse sets of genes will also give 
rise to cancers with similar behaviours and sensitivities 
to certain treatments. Optimizing the clinical benefit of 
cancer genomics for the future therefore demands the 
systematic integration of genomic data with meaningful 
clinical information in large databases.

Heterogeneity within an individual cancer. A num-
ber of external forces can act on the cancer genome to 
generate heterogeneity and to influence the subclonal 
structure (FIG. 2). The tumour microenvironment has an 
important role in selecting the cells that are best adapted  

Figure 2 | The role of the environment in evolutionary adaptation. A multitude of 
environmental factors may shape the evolutionary processes within a single cancer. Blue 
and purple bubbles represent successive cancer clones, the expansion of which is altered 
by directly mutagenic factors (grey arrows) and non-mutagenic factors (black arrows).
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Driver mutations
Somatic mutations within 
cancer genes that confer a 
clonal advantage, that are 
causally implicated in 
oncogenesis and that are 
positively selected for  
during cancer evolution.

to the (often hostile) environments in which they exist46. 
The identification of organ-specific branches within 
phylogenetic trees in metastatic studies is also indicative 
of environmental factors that select and drive specific 
genomic changes11,12 (BOX 1). Carcinogenic exposures, 
such as tobacco smoke, ultraviolet light and even some 
cancer treatments, may also have an important direct 
role in driving cancer heterogeneity6,45,47–49. The selec-
tive ‘environment’ also includes anticancer treatments. 
For example, verumafenib — an inhibitor of the serine/
threonine protein kinase BRAF — has revolutionized 
the treatment of metastatic melanoma by providing a 
targeted therapy for patients with the V600E BRAF point 
mutation. However, patients usually relapse within a few 
months as a result of emerging resistance. It is postulated 
that resistant clones are selected on the basis of either 
pre-existing or de novo abnormalities arising in alterna-
tive pathways50,51. This implies that genomic heterogene-
ity supports cancer survival in response to a changing 
environment.

Cellular ground state and cancer evolution
The observation that specific genes are associated with 
certain types of cancer in some tissues but not others 
indicates that the cell of origin may be an important 
factor in dictating the evolutionary trajectory. Every cell 
in the body is clonal, having arisen from a single zygote. 
There is some ‘physiological’ genomic change within 
organ systems, such as rearrangement and mutation 
of immunoglobulins in lymphocytes and somatic ret-
rotransposition of long interspersed elements (LINEs) 
in the brain52, but it is largely the case that the huge 
phenotypic variability among cells in a human is dic-
tated by the epigenome, transcriptome and proteome 
of those cells. It follows that this ‘ground state’ of a cell 
in which a somatic mutation arises will strongly influ-
ence how that mutation plays out, as the early life of a 
somatic mutation is fraught with the threat of extinction 
through random genetic drift. This concept is exempli-
fied by the BCR–ABL fusion gene, which is frequently 
associated with a range of haematological malignan-
cies. Studies have identified that the activation of ABL 
kinases in breast cancer cell lines promotes invasive-
ness; however, BCR–ABL has not been implicated in the 
pathogenesis of solid tumours53. Reasons for this speci-
ficity may include the low transcriptional activity of  
the BCR promoter in non-haematological cells, a lack  
of interacting partners needed for full oncogenic effects of  
the fusion protein or failure to induce a sustaining  
population of cancer cells.

The importance of the ‘ground state’ is exemplified 
by the specific ‘oncogenicity’ of KIT mutations in gas-
trointestinal stromal tumours (GISTs). KIT is a recep-
tor tyrosine kinase that is activated by stem cell factor 
binding (also known as mast cell growth factor bind-
ing), resulting in a signalling cascade that promotes cell 
survival, differentiation and proliferation, and germline 
KIT-activating mutations are associated with hyperplasia 
of interstitial cells of Cajal (ICCs) and GISTs54. In mouse 
models, it has recently been demonstrated that GISTs 
exclusively arise in a subset of ICCs that expresses high 

levels of endogenous ETS variant 1 (ETV1)55,56. ETV1 
is a member of the ETS family of transcription factors, 
which are involved in various key cellular processes, 
including cell cycling, proliferation and differentiation. 
In ICCs, ETV1 acts as both a survival factor and as a 
master regulator of a specific transcription programme 
that is co-opted by and required for transformation by 
activated KIT56. The implication is that in the absence 
of high levels of endogenous ETV1 expression, KIT  
mutations fail to drive the emergence of GIST cancers.

However, in most situations, the link between the cell 
of origin and the cancer phenotype appears to be less 
clear-cut. As an increasing number of genomic studies 
report broad catalogues of cancer genes, it is becoming 
apparent that many of the same genes are implicated 
across a broad range of tissue types — albeit at different 
frequencies. For example, two independent studies iden-
tified that cancer genes that are historically associated 
with haematological malignancy, such as runt-related 
transcription factor 1 (RUNX1) and core-binding fac-
tor, beta subunit (CBFB), are also recurrently mutated 
in breast cancer30,57.

The role of epistasis in cancer genome evolution. A new 
mutation in a cancer gene does not occur in isolation 
but rather enters into an established genomic landscape. 
This existing gene network may have a profound effect 
on the fate of the cell, determining whether there is a 
cell death or clonal expansion. The ground state of a cell 
can be considered to represent interactions with cel-
lular identity, whereas epistasis, by contrast, represents  
interactions among oncogenic mutations.

Three major lines of evidence drawn from recent  
studies have demonstrated the probable importance of 
epistatic factors in cancer genome evolution. First, the 
large cancer gene databases have shown that, despite 
extensive heterogeneity in common cancers, particular 
combinations of somatic mutations may co-occur more 
than expected by chance, such as TP53 and breast cancer 1,  
early onset (BRCA1) and breast cancer 2, late onset 
(BRCA2) mutations in breast cancer58 or the oncogenic 
KRAS and serine/threonine kinase 11 (STK11; also 
known as LKB1) mutations in lung cancer59,60. Second, 
activation of many oncogenes, including KRAS, can lead 
to a state of ‘oncogene-induced senescence’61,62. This is an 
acute and telomere-independent form of senescence that 
can occur in response to the expression of oncogenes and 
is protective against cancer. It is widely believed that sec-
ond hits, such as cyclin-dependent kinase inhibitor 2A  
(CDKN2A) inactivation, are required to ameliorate 
these effects63,64. Third, convergent evolution among 
subclones within the malignant tumour (or tumours) 
of a particular patient also implies cooperativity among 
somatic mutations12,15,65, and this is exemplified by 
patients with renal cancer9 (BOX 1). A recent multi-
region sampling study identified that after ubiquitous 
von Hippel–Lindau tumour suppressor, E3 ubiquitin 
protein ligase (VHL) loss, driver mutations inactivating 
histone modifiers can independently arise in different 
branches of the phylogenetic tree. Even more strikingly, 
independent phosphatase and tensin (PTEN) mutations  
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Synthetic lethality
Two genes are synthetically 
lethal if mutation of either in 
isolation is compatible with 
viability, but mutation of both 
leads to cell death.

occurred twice in one patient in different subclones, 
despite PTEN mutations being found in only 1% of renal 
cancers overall9. This implies that some specific feature 
of the genomic landscape of this patient’s cancer was par-
ticularly dependent on the inactivation of PTEN — an 
event that is not required for most renal cancers.

Little is known about whether the order of muta-
tion acquisition is important. The renal cancer studies 
described above do suggest a pre-requisite for early VHL 
loss in renal cancer, but the extent to which this is a gen-
eral rule is unclear. Ancestral gene reconstruction and 
protein-engineering studies demonstrate that epistatic 
interactions can limit the potential mutational trajecto-
ries that are available and can also enforce ratchet-like 
constraints by inhibiting the reversibility of the evolu-
tionary process66. Certain oncogenic mutations may 
mandate that specific cellular pathways be targeted by 
subsequent mutations. Such an effect would restrict the 
set of potential driver mutations that could occur after 
the initial event67.

The strands of data discussed above imply coopera-
tivity among cancer-causing mutations, and this coop-
erativity can include mutations that ameliorate negative  
effects of other variants (synthetic viability) or mutations 
that, when combined, result in synergistic effects (greater 
than the sum of their individual effects). This is exempli-
fied by the interaction between the proto-oncogene MYC 
(also known as c‑MYC) and B cell CLL/lymphoma 2 
(BCL2) in cell lines. The overexpression of MYC induces 
apoptosis, but the co-expression of BCL2 overrides this 
effect and permits MYC to drive the cell into cycling68,69.

From the clinical standpoint, discovering and 
understanding epistatic interactions such as synthetic 
lethality is proving useful in the design of targeted ther-
apies70. The sensitivity of BRCA1−/− cells to poly(ADP-
ribose) polymerase (PARP) inhibitors is already a 
widely cited ‘synthetic lethality’ interaction in the 
clinic71. BRCA1 is essential for homologous recombi-
nation repair of dsDNA breaks. BRCA1−/− cells are able 
to survive despite this defect, but it comes at the cost 
of critical dependence on alternative repair pathways 
involving PARP function. Therefore, in BRCA1−/− cells 
that have been treated with PARP inhibitors, DNA 
breaks that arise from collapsed replication forks 
cannot be repaired, resulting in cell arrest and death. 
However, in the face of PARP inhibitor therapy, ‘rever-
sion’ mutations in BRCA1 and BRCA2 can result in the 
restoration of a partially functional protein homolo-
gous recombination72,73, leading to the escape of the 
clone from the detrimental effects of the treatment. 
This example shows the clinical potential to exploit 
epistatic interactions but also the complexity of these 
networks and the problems posed by the dynamic and 
rapidly evolving cancer genome.

The role of genomic crises in tumorigenesis
Recent lines of evidence derived from directly study-
ing cancer genomes indicate that, in some cases, a huge 
number of mutations can occur in a timescale that is 
considerably shorter than that on which clonal selec-
tion operates (FIG. 3). These mutational processes can 
take several forms.

Telomere attrition is associated with end-to-end chro-
mosome fusions, and this can drive massive genomic 
disruption through repeated breakage–fusion–bridge 
cycles74. An end-to-end chromosome fusion generates 
a dicentric chromosome (that is, a chromosome with 
two centromeres), and the two centromeres are pulled 
to opposite daughter cells during mitosis, generating 
further DNA breaks. This process can be repeated with 
every cell cycle until a telomere is restored to the naked 
DNA ends. Within a few cell cycles, and certainly on a 
much faster timescale than natural selection can oper-
ate, widespread chromosomal deletions and exponential 
genomic amplification can develop75,76.

Balanced chains of somatically acquired genomic 
rearrangements have been observed in prostate cancer40 
and some haematological malignancies. These chains 
can show up to ten genomic regions involved in a mutual 
exchange of DNA segments without copy number loss. 
In some cases, these generate oncogenic fusion genes (for 
example, in the TMPRSS2–ERG loci) or gene disrup-
tions. Curiously, regions that are involved in these chains 
show a propensity to involve highly transcribed genes. 
In one example, breakpoints were in close proximity to 
four potential cancer genes: TANK-binding kinase 1  
(TBK1), TP53, mitogen-activated protein kinase kinase 4  
(MAP2K4) and ABL1.

Approximately 2–3% of cancers show evidence for 
a catastrophic mutational process that has been coined 
chromothripsis41. A process of genome shattering and 
reassembly occurs in a one-off crisis, resulting in a 

Figure 3 | Stepwise versus crisis-driven mutation accumulation. Multi-step and 
crisis event models of carcinogenesis are represented. It is thought that these 
pathways are not necessarily mutually exclusive but that they may coincide and 
overlap. In this example, mutations A–E (orange to red circles) are those that are 
required to initiate clonal expansion and malignant transformation, whereas mutations 
F–H (blue circles) drive ongoing evolution and the acquisition of aggressive clinical 
characteristics. The pre-malignant phase (P) and the time from malignancy onset to 
acquisition of an aggressive phenotype (A) are reduced in the crisis event model 
compared to the multi-step model. This indicates that standard screening techniques 
that aim to detect pre-invasive and early malignancies may be inadequate in  
cancers that develop through crisis events.
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Kataegis
A localized hypermutation that 
often colocalizes with somatic 
rearrangements.

Microsatellite instability
(MSI). Microsatellites are 
repeating sequences within 
DNA of 2–6 base pairs in 
length; defects in mismatch 
repair can give rise to genomic 
instability within these regions.

Chromosomal instability
(CIN). A form of genomic 
instability that is common in 
cancers and is characterized  
by large chromosomal  
losses by as of yet undefined 
mechanisms.

characteristic pattern of oscillating DNA copy number 
and up to several hundred genomic rearrangements 
localized to one or a few chromosomes. This localiza-
tion may be the result of physically isolating the dam-
aged chromosomes in micronuclei created during 
anaphase77. Chromothripsis has been observed at a 
low frequency in a diverse range of cancers, including 
chronic lymphocytic leukaemia (CLL), neuroblastomas, 
myelomas, breast cancer, small and non-small-cell lung 
cancers and renal, thyroid and gastrointestinal malig-
nancies8,41,43. It is notable that a recent study identified 
high rates of chromothripsis in medulloblastomas and 
AML in the presence of mutant TP53 (100% and 47% of 
cancers, respectively) but not wild-type TP53 (0% and 
1%, respectively)42. Bone sarcomas also seem to have a 
particularly high rate of chromothripsis41.

In addition to clusters of structural variants, multiple 
point mutations can also be acquired in one-off bursts. In 
a sizable proportion of breast cancers, we have observed 
clusters of cytosine mutations near sites of genomic rear-
rangement: a process that we termed kataegis24. These 
clusters can represent up to 10–20 base substitutions in 
one or two kilobases, all occurring at cytosines in a TpC 
context, all collinear (that is, in linkage) and all occur-
ring on either the forward or reverse strand of DNA. The 
mechanism underlying such events remains mysterious, 
although the mRNA-editing APOBEC proteins may be 
involved25. This phenomenon has not yet been reported 
in other types of cancer.

All of these catastrophic mutational processes imply 
that cancer genome evolution may not always be a grad-
ual stepwise progression (FIG. 3). In one of the patients 
with chromothripsis, the crisis simultaneously dis-
rupted three tumour-suppressor genes — the E3 ubiq-
uitin protein ligase FBXW7, CDKN2A and the RecQ 
helicase WRN41. This suggests that the clone would 
have taken a substantial leap along the path to malig-
nancy after the catastrophic event. In multiple myelo-
mas, samples with evidence for chromothripsis were 
associated with reduced survival, indicating that the  
large-scale genomic disruption may have rendered 
the myeloma cells more malignant, with similar data 
emerging for neuroblastoma78,43. These mechanisms 
of mutation accumulation are not mutually exclusive. 
Gradual mutation accumulation occurs to some degree 
in all cancers, representing perpetual adaptation to the 
tumour environment but may be punctuated by highly 
disruptive episodes.

The role of mutation rate in cancer evolution
The number of driver mutations required for a cancer 
to become fully malignant is debated, but it is gener-
ally considered to be between 2 and 20 in most types 
of common solid malignancy79,80. Some cancers, such 
as certain subtypes of AML, accumulate a sufficient 
complement of mutations to transform to a malignant 
phenotype in the presence of an apparently normal 
mutation rate81. There are several lines of evidence, 
however, indicating that many cancers achieve the 
required complement of driver mutations by means of 
an elevated mutation rate.

‘Mutator mutations’ in carcinogensis. ‘Mutator muta-
tions’ are mutations within cancer genes that increase 
the mutation rate across the cancer genome. The effects 
of such mutations can be broadly categorized as: reduced 
ability to detect and/or repair DNA damage; failure of 
genomic surveillance mechanisms; and increased sus-
ceptibility to DNA damage by exogenous and endoge-
nous carcinogens (FIG. 4). It has long been recognized that 
inherited cancer syndromes, including ataxia telangiec-
tasia, xeroderma pigmentosum, Bloom’s syndrome and 
hereditary non-polyposis colorectal cancer, are caused 
by germline defects in specific DNA repair genes82. They 
are associated with an elevated mutation rate and are 
characterised by early onset cancers.

Microsatellite instability (MSI) is characterized by a 
high rate of substitutions and small insertions and dele-
tions, and it arises from mutations in mismatch repair 
genes, including MSH2 and MCH1 (REF. 44). MSI occurs 
in less than 20% of colorectal cancers and has also been 
reported at low frequency in a diverse range of other 
tumour types including gastric, endometrial and seba-
ceous cancers and lymphomas83. A much more frequent 
pattern of genomic instability that is seen in nearly all 
types of common solid malignancy, including breast and 
colorectal cancer, is chromosomal instability (CIN), which 
is a process whereby whole-chromosome segregation 
abnormalities during mitosis result in aneuploidy84–86.

Epigenetic instability is also common in a wide range 
of cancers (BOX 3). Aberrant methylation of CpG islands 
in promoter regions is correlated with silencing of multi-
ple tumour suppressor genes, resulting in the CpG island 
methylator phenotype (CIMP). This has been observed 
in many cancer types and is associated with aetiologi-
cally and clinically distinct types of colorectal cancer87 
and glioma88.

Elevated mutation rate. Many of the aggressive clinical 
characteristics of cancers, such as the abilities to resist 
treatment, to relapse and to metastasize, depend on 
the continued generation of genetic variation that per-
mits adaptation7,12. However, whether all cancers have 
elevated mutation rates compared to normal cells has 
been controversial81,89,90. In the era of whole-cancer-
genome sequencing, however, it is becoming clear that 
the overwhelming majority of tumours carry hundreds 
to hundreds of thousands of somatic mutations, which 
is suggestive of an elevated mutation rate.

A preponderance of a specific type of base substitu-
tion in a given context, such as C-to-T mutations in a 
CpG context, can be viewed as a ‘mutational signature’ 
that reflects an underlying mutational process6,12,45. 
Analysing these mutational signatures in 21 breast can-
cer genomes identified several major processes involv-
ing base substitutions, small insertions and deletions 
and genomic rearrangements25. Mutations acquired 
early in the development of the cancer were dominated 
by C-to-T transitions, especially in a CpG context, that 
are likely to represent spontaneous deamination of 
methylated cytosines. This is a rather generic muta-
tional process, is similar to that seen in the germ line 
and reflects that seen by exome sequencing of normal 
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haematopoietic stem and/or progenitor cells in healthy 
people81. However, nearly all tumours demonstrated a 
substantial shift in the contribution from individual 
processes over time with several novel mutational pro-
cesses reported generally emerging late in the develop-
ment of the cancer24. Taken together, this information 
implies that the vast majority of breast cancers have 
an elevated, cancer-specific increase in mutation rate. 
Environmental exposures, including the traditional 
cancer treatments (namely, chemotherapy and radio-
therapy), also influence mutation rate and spectrum. 
Chemotherapy, for example, is associated with an 
increase in transversions21. The functional effect of 
endogenous and external factors that increase mutation 
rate on cancer progression remains to be elucidated.

There may be examples of tumours in which muta-
tion rate per cell division is not increased. AML, for 
example, does not have an excessive mutation burden, 
and when compared with age-matched normal haemato-
poietic cells, mutation numbers are broadly similar81. 
In a similar fashion, there is a correlation between age 
and mutation burden in the childhood tumour, medul-
loblastoma34,91, suggesting that mutation accumulation 
in this disease is more a function of time than it is an  
acquisition of specific mutational processes.

Mutation rate distribution across the cancer genome. 
Mutation is generally modelled as a random process, 
but there is increasing evidence that the distribution 
of somatic mutations shows variegation across the 
genome in both the rate and the type of variation.  
The most extreme example of this is somatic hypermu-
tation in lymphoid malignancies. In normal B lympho-
cyte ontogeny, the immunoglobulin gene is subjected 
to targeted mutation to increase antibody diversity in 
response to infection. Sometimes, however, the tightly 
controlled genomic localization of the hypermutation 
machinery can be loosened, and other genes that are 
highly expressed during lymphoid differentiation may be 
subjected to this process. This aberrant somatic hyper-
mutation has only been described in association with a 
handful of genes. It preferentially targets the 5ʹ untrans-
lated region and the first coding exon of the gene and can 
repeatedly occur during lymphoma development, driving 
much subclonal diversity just at these specific loci92. In  
particular, the oncogene BCL6 is commonly mutated  
in this way in diffuse large B cell lymphoma93,94.

Less extreme examples of variable mutation rates 
across the genome abound. Chromosomal fragile sites 
have been documented in cytogenetic studies for some 
years, and cancers show increased rates of heterozy-
gous and homozygous deletion at these sites compared 
to other regions of the genome95,96. This increased rate 
of genomic rearrangement may in part result from 
these regions having fairly sparse origins of replica-
tion and being late replicating during the cell cycle97,98. 
In many cases, these deletions are of no biological 
consequence to the cell, but there is some evidence 
that cancer genes may reside in these loci. For exam-
ple, Parkinson protein 2, E3 ubiquitin protein ligase  
(PARK2) can be recurrently deleted and mutated in  

Figure 4 | ‘Mutator mutations’ drive genomic instability in cancers. There are two 
major recognized routes by which genomic instability may arise. Chromosomal 
instability (CIN) is common across all types of cancer and may be numeric (aneuploidy) 
or structural. CIN may arise through mutations in a wide range of genes involved in 
cell cycling and division (orange boxes) or through other diverse mechanisms, such as 
telomeric dysfunction or as a consequence of failure in homologous repair. 
Microsatellite instability (MSI) is less common and occurs as a result of mutations in  
the mismatch repair genes (purple boxes). Instability may also directly arise as a 
consequence of defects in homologous repair, necessitating the use of alternative  
error prone pathways, such as non-homologous end joining (NHEJ) and single-strand 
annealing (SSA). Error-prone pathways may result in both chromosomal instability and 
genomic instability through frequent small deletions or substitutions. Mutagenic 
exposures may also contribute to genomic instability. ATM, ataxia telangiectasia 
mutated; ATR, ataxia telangiectasia and Rad3-related; BUB1, budding uninhibited by 
benzimidazoles 1; BUBR1, budding uninhibited by benzimidazoles 1 beta; BRCA1, 
breast cancer 1, early onset; BRCA2, breast cancer 2, early onset; DSB, double-strand 
break; indel, insertion or deletion mutation; MAD2, MAD2 mitotic arrest deficient-like 1; 
MSH2, mutS homologue 2, colon cancer, nonpolyposis type 1; MLH1, mutL homologue 1, 
colon cancer nonpolyposis type 2; PALB2, partner and localizer of BRCA2.
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gastrointestinal tumours99, and knockout of the gene 
in mice increases the rate of APC‑induced colorectal 
tumours100.

The underlying chromatin state may also contribute 
to genomic rearrangement. In lymphomas, genes that 
are frequently fused with the immunoglobulin locus are 
often geographically proximate during interphase101, 
and in prostate cancer androgen can induce intra- and 
interchromosomal proximity between the ETS fusion 
gene partners102,103. In breast cancer, 50% of somati-
cally acquired genomic rearrangements involve a gene  
footprint compared with 40% expected by chance104.

With regard to point mutations, mismatch repair 
deficiency causes a specific distribution and signature 
of mutations across the genome. For example, in micro-
satellite-unstable colorectal cancer, genes such as the 
type 2 TGFβ receptor gene are particularly prone to 
mutation owing to their specific nucleotide mix, whereas 
this gene is almost never mutated in microsatellite-stable 
colorectal cancer105. Similarly, the distribution of onco-
genic point mutations in TP53 and KRAS in tobacco-
induced lung cancer differs from lung cancers that 
develop in people who have never smoked45,49. The effi-
cacy of DNA repair processes also leads to genomic vari-
ation in mutation rate: in carcinogen-induced tumours 
especially, lower rates of mutation are seen in highly 
expressed genes compared with non-expressed genes106.

How does this variegation in mutation rate across the 
genome impact on our understanding of cancer evolu-
tion? Clearly, cancer can arise from a vast array of differ-
ent possible driver mutations. These data indicate that 
the observed distribution of driver mutations seen in a 
given tumour type depends not only on the oncogenicity 
of the given genes in that cellular context (namely, the 
selective advantage associated with the mutation) but 
also on the probability with which a given change can 
arise in the population of competing clones.

Conclusions
In the not too distant future, genomic features of every 
patient’s cancer type will be characterized at the point of 
diagnosis. A list of implicated cancer genes and muta-
tional processes will be generated, and a personalized 
therapeutic regimen will be chosen. One of the major 
challenges to this vision is how to sample the cancers 
to attain an accurate view of the underlying complexity 
and to address the fact that cancers are highly dynamic 
evolutionary processes9. A single sample is a ‘snapshot’ 
in space and time. Multi-region sampling and sampling 
of distinct metastatic sites will help to reduce the prob-
lem posed by geographical heterogeneity but will have 
to be balanced with clinical risk and patient choice. It is 
necessary to acknowledge that even with the most sen-
sitive and accurate of genomic technologies, clinically 
important mutations that are confined to subclones may 
be missed on account of inadequate sampling. The clini-
cal approach towards sampling will therefore be guided 
by multi-sampling studies within all cancer types, and 
in particular important insights may be gained from 
studies that use sequential time-ordered sampling of 
cancers with well-defined precursor lesions, such as 
cervical intra-epithelial neoplasia in cervical cancer and 
Barrett’s oesophagus in oesophageal cancer.

Understanding how the cancer genome responds to 
treatment and promotes metastasis presents a further 
challenge, requiring longitudinal sampling strategies 
incorporated into long-term clinical trials. Furthermore, 
the optimal targeted therapeutic approaches to cancers 
with branching evolutionary architectures remains 
unclear. The observation that any individual cancer may 
contain both clonal driver mutations (that is, mutations 
that occur within the phylogenetic tree trunk) and sub-
clonal driver mutations, which are linked through epi-
static interactions, indicates that cancer eradication may 
well demand complex combinations of drugs.

Box 3 | The interplay of the epigenome and genome in cancer evolution by natural selection

For epigenetic factors to be important in cancer evolution, three criteria must be met: stochastic variation must exist 
among competing clones in a given epigenetic locus; this variation must be heritable; and there should be phenotypic 
consequences of epigenetic variation for natural selection to act on.

Within cancers, individual tumour suppressor genes may be epigenetically silenced through promoter CpG island 
hypermethylation108. However, in contrast to mutation, little is known about the stochastic acquisition and loss of 
epigenetic changes. Nonetheless, bisulphite sequencing of individual haplotypes of CpGs has shown that some regions 
do show variability across different cells in a sample109,110. There is a robust machinery of cytosine methylases that 
faithfully copy methylation at CpG dinucleotides from the template strand to the newly synthesized DNA strand during 
DNA replication, indicating that these changes are heritable. It is less clear how histone marks are transmitted to the 
daughter cells, although such pathways are presumed to exist.

An emerging theme of recent genomic discoveries in cancer has been the frequent mutation of genes that are involved 
in epigenetic regulation, further highlighting the importance of interactions between genetic and epigenetic changes. 
This is exemplified by mutations in AT‑rich interactive domain 1A (ARID1A) in ovarian cancer111,112, inactivation of 
polybromo 1 (PBRM1), lysine‑specific demethylase 5C (KDM5C), KDM6A (also known as UTX) and SET domain containing 2 
(SETD2) in renal cancer113 and the remarkable observation of activating mutations of the Polycomb group gene EZH2 in 
follicular lymphoma54 but inactivating mutations of the same gene in chronic myeloid malignancies114,115. Chromatin 
studies have indeed shown epigenetic consequences of these mutations, but we lack a detailed understanding of the 
particular target genes involved or the Darwinian evolution of the epigenetic landscape after these genomic aberrations 
appear. Nonetheless, a recent genome‑wide methylation profiling study in acute myeloid leukaemia identified  
that genetically distinct subtypes of disease carried characteristic epigenetic profiles116. This implies that a particular 
driver gene may promote the evolution of and may cooperate with an epigenetic landscape that is ‘optimal’ for that 
genomic change.
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