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Abstract

Purpose: Lung squamous cell carcinoma (SCC) is clinically and genetically heterogeneous, and current
diagnostic practices do not adequately substratify this heterogeneity. A robust, biologically based SCC
subclassification may describe this variability and lead to more precise patient prognosis and manage-
ment. We sought to determine if SCC mRNA expression subtypes exist, are reproducible across multiple
patient cohorts, and are clinically relevant.

Experimental Design: Subtypes were detected by unsupervised consensus clustering in five published
discovery cohorts of mRNA microarrays, totaling 382 SCC patients. An independent validation cohort of
56 SCC patients was collected and assayed by microarrays. A nearest-centroid subtype predictor was built
using discovery cohorts. Validation cohort subtypes were predicted and evaluated for confirmation.
Subtype survival outcome, clinical covariates, and biological processes were compared by statistical
and bioinformatic methods.

Results: Four lung SCC mRNA expression subtypes, named primitive, classical, secretory, and basal,
were detected and independently validated (P < 0.001). The primitive subtype had the worst survival
outcome (P < 0.05) and is an independent predictor of survival (P < 0.05). Tumor differentiation and
patient sex were associated with subtype. The expression profiles of the subtypes contained distinct bio-
logical processes (primitive: proliferation; classical: xenobiotic metabolism; secretory: immune response;
basal: cell adhesion) and suggested distinct pharmacologic interventions. Comparison with lung model
systems revealed distinct subtype to cell type correspondence.

Conclusions: Lung SCC consists of four mRNA expression subtypes that have different survival
outcomes, patient populations, and biological processes. The subtypes stratify patients for more precise
prognosis and targeted research. Clin Cancer Res; 16(19); 4864-75. ©2010 AACR.
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Lung cancer is the leading cause of cancer-related death
worldwide (1). Squamous cell carcinoma (SCC) is a major
histologic type and comprises ~30% of all pulmonary tu-
mors (2, 3). SCC is defined by the presence of cytoplasmic
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keratinization and/or desmosomes (intracellular bridges;
ref. 4). Clinically, SCC tumors occur more often in smokers
and males compared with the other histologic types (2, 5).
Patients affected with SCC tumors show a wide range of clin-
ical outcomes. For instance, 83% of autopsied SCC patients
had regional metastases (5) and 68% of SCC stage I patients
survived beyond 5 years (6). Within SCC, there is noticeable
morphologic variability, especially among poorly differenti-
ated tumors (4, 7). The WHO SCC type includes a stratifica-
tion of this variability with four variants (papillary, small
cell, clear cell, and basaloid; ref. 4), but their prevalence
and clinical and biological significance remain unclear. Be-
cause there is significant pathologic and clinical outcome
variability within the SCC histologic type, a robust, biolog-
ically derived subclassification may be valuable.

Recent years have seen progress in classification of a va-
riety of malignancies using full-genome molecular assays,
primarily those directed at mRNA expression [e.g., leuke-
mia (8), breast (9), and lung adenocarcinoma (10)]. A
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Translational Relevance

Lung squamous cell carcinoma (SCC) has broad
clinical, genetic, and morphologic heterogeneity. Cur-
rently, there is no subclassification that adequately de-
scribes this variability and SCC patients are basically
treated as though they have the same disease. One ex-
planation for SCC variability is that SCC is not a sin-
gular disease but a mixture of multiple discrete
diseases or subtypes defined by innate biological dif-
ferences. Using five discovery cohorts and an indepen-
dent validation cohort totaling 438 patients, we show
that SCC is composed of four robust mRNA expression
subtypes (named primitive, classical, secretory, and
basal). The subtypes have significantly different surviv-
al outcomes, patient populations, and biological pro-
cesses. Using these subtypes as a basis for a future
clinical diagnostic assay, patients could receive a more
precise prognosis. Additionally, we described model
system partners for the subtypes that can be used for
targeted basic research.

successful approach is unsupervised class discovery, which
detects naturally occurring tumor classes (“mRNA expres-
sion subtypes”) without prespecified characteristics such
as patient survival (8). Preliminary efforts have been made
in SCC, suggesting the existence of SCC mRNA expression
subtypes. In independent analyses, investigators (11-13)
discovered two mRNA expression subtypes with intriguing
biological profiles and a corresponding patient survival
difference. These studies show that SCC might be subclas-
sified using mRNA expression into groups with clinical rel-
evance; however, the studies were not done in a manner
that validated either the number or the nature of these
intriguing classes. A validated mRNA expression classifica-
tion could substantially progress patient care and research
in lung SCC. In this study, we describe four novel repro-
ducible expression subtypes (primitive, classical, secretory,
and basal) of lung SCC. The SCC subtypes have different
survival outcomes, patient demographics, physical char-
acteristics, biological processes, and correspondence to
normal lung cell types.

Materials and Methods

Tumor collection

Frozen, surgically extracted, macrodissected, primary tu-
mors from treatment-naive patients at the University of
North Carolina with a lung SCC diagnosis were collected
under Institutional Review Board approved protocols 90-
0573 and 07-0120. Morphologic quality control was
based on a review of a representative H&E-stained section
from paraffin-embedded tissue immediately adjacent to
the frozen tissue for confirmation of squamous histology
by four pathologists (Supplementary Fig. S1) and for quan-

tification of tumor content. Tumor RNA was extracted (14)
and assayed for mRNA expression using Agilent 44,000
probe microarrays for a total of 56 microarrays. Microar-
rays were processed by normexp background correction
and loess normalization (15). This data set is referred to
as the “validation cohort” and was deposited at National
Center for Biotechnology Information (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE17710).

Published data sets

A structured search for publicly available SCC mRNA ex-
pression microarray data sets was conducted via Gene Ex-
pression Omnibus and PubMed and manually selecting
data sets that have a large number of lung SCC samples
to permit subtype analysis and that have significant
cross—data set gene reliability, as measured by integrative
correlations (16). This search yielded five data sets (referred
to as the “discovery cohorts”) from the following studies:
Bild et al. (17), Expression Project for Oncology (Expo;
http://www.intgen.org/expo/), Lee et al. (18), Raponi et al.
(13), and Roepman et al. (19). Published cohorts contained
surgical resections from treatment-naive patients if indi-
cated. Clinical data and raw or processed microarray data
were obtained. Only microarrays with SCC histology
were retained. Raw microarrays or gene lists from lung
model systems were obtained (20-23). Microarrays were
subjected to standard quality assessments, mapped to a
common transcript database, and processed into gene-
level expression values (Supplementary Table S1).

Unsupervised subtype discovery

The subtype discovery and validation procedure is
depicted in a flowchart (Supplementary Fig. S2). Genes
with high reliability and variability were selected similar
to previously described methods (9, 10, 12, 13, 16). Gene
reliability was measured by integrative correlations, and
genes having an estimated false discovery rate (FDR) of
0.1% were retained (16). To select variable genes, genes
in each discovery cohort were ranked by median absolute
deviation in decreasing order. These ranks were averaged
and reranked to make a single, ranked gene list. The top
25% of this ranked list, totaling 2,307 genes, was used
for clustering. Before clustering, each data set was gene
median centered (24, 25). Subtypes were determined
in each discovery cohort by the Consensus Clustering
algorithm via ConsensusClusterPlus (26, 27). This
algorithm completed 1,000 microarray subsamples at a
proportion of 80% and clustered these subsamples by an
agglomerative average-linkage hierarchical algorithm using
1-Pearson correlation coefficient distance. Consensus
values, the proportion that two microarrays occupy the
same cluster, were calculated and then clustered by an
agglomerative average-linkage hierarchical algorithm using
Euclidean distance.

Subtype summarization by centroids
Centroids are median expression profiles of a group of
arrays and were prepared using methods previously
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described (25, 28). Centroids were determined by taking a
group of microarrays from a gene median centered cohort
and obtaining the median of each gene. Multicohort cen-
troids are determined by taking a group of centroids and
taking the median of each gene.

Differentially expressed genes

Differentially expressed genes were determined by a
standardized mean difference procedure that considers be-
tween cohort and within-cohort variation (29) using the
GeneMeta Bioconductor library (http://bioconductor.org/
packages/2.2/bioc/html/GeneMeta.html) and a random
effects option. Gene set enrichment analysis (GSEA) was
used to determine gene sets significantly enriched in
ranked gene lists (30).

Validation cohort subtype prediction

Subtype status of the validation cohort was predicted
by a nearest-centroid classification algorithm following
previously published methods (28). In brief, the predictor
was built, using only the discovery cohorts, by adding
genes to a balanced centroid, assessing subtype prediction
error rates by leave-one-out cross-validation, adding genes
differentially expressed from the most mispredicted sub-
type to its centroid, and stopping once accuracy failed to
improve. Subtype predictor centroids, unsupervised gene
lists, and all gene multicohort centroids are available
online (http://cancer.unc.edu/nhayes/publications/scc/).

Survival analysis

The R library survival was used for survival statistical
analyses. Patients dead within 1 month following surgery
were considered to have procedure-related complications
and not considered in survival analyses. Five patients
met this condition all from the UNC cohort. Relapse-free
survival (RES) time was defined as the time from surgery
until first relapse or death.

Immunohistochemistry

Cores (1 mm) were taken from available UNC cohort
tissue blocks and randomly organized into tissue microar-
ray blocks. Consequal 4-um array block sections were as-
sembled on array slides and stained with H&E, MAC387
(Dako), p63 (Dako), CK7 (Leica Microsystems), and
MCMG6 (Santa Cruz Biotechnology).

Computational procedures were executed using R ver-
sion 2.7.1 (http://www.r-project.org/) and Bioconductor
libraries (http://www.bioconductor.org) unless otherwise
specified.

Results

Unsupervised discovery of lung SCC expression
subtypes in five cohorts

Lung SCCs are a heterogeneous group of tumors, and
therefore, we did a common set of mRNA expression
analyses using five previously published lung SCC data

sets to determine how many distinct subtypes/groups of
disease might exist. These five discovery cohorts were
analyzed for the presence of mRNA expression subtypes
using the Consensus Clustering methodology (26) as
previously described for lung cancer (10). Consensus
Clustering is a semiquantitative method for determining
an optimal number of mRNA expression clusters/groups.
Results show that all five cohorts contain four clusters
(Supplementary Fig. S3). There is no compelling evi-
dence for a higher number of clusters. To test if the four
clusters from each cohort have the same expression pro-
files, a published centroid clustering method was fol-
lowed (10). The centroid clustering shows a four-group
structure, where each cohort is in each group, with only
one cohort absent in one group (Supplementary Fig. S4).
Therefore, the four clusters (mRNA expression subtypes)
found in the five discovery cohorts have consistent
expression profiles. To derive the optimal subtype for
each patient, a multicohort centroid classification was
used to assign each patient to a subtype, similar to pub-
lished methods (28). A centroid clustering based on
these optimal subtypes again shows a four-group struc-
ture and complete, unambiguous cross-cohort correspon-
dence (Fig. 1). The cross-cohort clustering is statistically
significant [Sigclust (31) P values in Fig. 1]. Interestingly,
the subtypes have approximately the same prevalence
among the discovery cohorts (Table 1). Using biological
characteristics described below, the lung SCC mRNA
expression subtypes are named primitive, classical, secre-
tory, and basal.

SCC subtype independent validation

Although the four SCC subtypes were “cross-cohort”
validated in that they were repeatedly found in five co-
horts, this validation was not independent because dis-
covery co-occurred with validation. For an independent
validation, we tested the hypothesis that the SCC sub-
types will exist in a new discovery-independent cohort.
To test this hypothesis, a subtype predictor was built
using the discovery cohorts, which consisted of 208 genes
and had 94% leave-one-out cross-validation accuracy.
Using this predictor, subtype classifications were made
for microarrays from a new cohort of 56 lung SCC tu-
mors collected at UNC. All four subtypes were predicted
in the UNC cohort and in approximately the same
prevalence as the discovery cohorts (Fig. 2; Table 1),
which supports subtype reproducibility. To confirm the
validity of the predictions, a comparison of expression
characteristics between the discovery and UNC cohorts
was completed similar to a recent related study (32).
We compiled a large validation gene set of the top 100
genes overexpressed and underexpressed per subtype of
the discovery cohorts (Fig. 2A), which yielded 1,117
unique genes. Subtype expression patterns are highly
concordant between the discovery and UNC cohorts
across the validation gene set (Fig. 2A and B), confirming
that the large-scale expression patterns are consistent be-
yond the predictor gene set. In addition, the subtypes of
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Fig. 1. Discovery cohort correlation matrix and dendrogram. Cells are labeled by discovery cohort and adjusted centroid, where A to D are from
Supplementary Fig. S4. B, Cells in the matrix represent the 1-Pearson correlation coefficient between two discovery cohort and adjusted centroids by
shading according to the scale above. For example, BildA and RoepmanA have highly similar expression profiles, a large Pearson correlation coefficient, a
small 1-Pearson correlation coefficient value, and corresponding cells darkly shaded. A, the matrix is ordered by columns and rows by the dendrogram
at the top of the matrix. The dendrogram is the result of an agglomerative, average-linkage, hierarchical clustering using this correlation matrix. C, four
expression subtypes. Statistical significance of the three binary divisions leading to the four subtypes is shown by Sigclust (31) P values in the dendrogram

at the corresponding binary split.

the UNC cohorts are a statistically significant partition of
its mRNA expression [SWISSMADE (33) subtypes versus
random classes; P < 0.001]. We conclude that the prede-
fined SCC subtypes exist in the UNC cohort and are,
therefore, independently validated.

To preliminarily evaluate if clinically applicable biomar-
kers can distinguish the subtypes, we selected one overex-
pressed gene per subtype (basal, S100A8; classical, TP63;
secretory, KRT7; primitive, MCM6) for immunohisto-

chemical protein expression comparison using a tissue mi-
croarray subset of the UNC cohort (n = 38). All antibodies
targeting these genes, except MCMG6, had sufficient stain-
ing for analysis. Protein expression clustering using basal,
classical, and secretory samples revealed three essentially
mutually exclusive groups with one marker defining each
group (Supplementary Fig. S5). These groups were signif-
icantly associated with tumor subtype (P = 0.007, Fisher's
exact test). This suggests that SCC subtypes can also be
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distinguished by immunohistochemistry, and future
work may find the optimal panel of immunohistochemi-
cal antibodies.

Subtypes exhibit distinct biological processes

To discern biological processes associated with each
subtype, subtype mRNA expression was evaluated for en-
richment in gene ontology, pathway, transcription factor
binding site, and cytoband gene sets by GSEA (30). Be-
cause of the inherent redundancy in biology, we have col-
lapsed these processes into functional themes (Fig. 3).

Here, subtypes are described in terms of overexpression
relative to the other subtypes.

The distinctive functional theme of the primitive sub-
type is cellular proliferation, which includes genes such
as minichromosome maintenance 10 (MCM10), E2F transcrip-
tion factor 3 (E2F3), thymidylate synthetase (TYMS), and
polymerase a1 (POLA1), and a published proliferation sig-
nature (34). This proliferation theme is overexpressed in
the most rapidly growing breast cancer cell lines (35)
and in the most poorly differentiated, poor survival
tumors from various organ sites (34). Complementary to

Table 1. Clinical characteristics of lung SCC expression subtypes
Discovery cohorts Validation cohort (UNC)
Primitive Classical Secretory Basal Total Primitive Classical Secretory Basal Total
No. patients Bild et al. 7 20 15 10 52
Lee et al. 14 30 22 9 75
Expo 4 15 11 6 36
Raponi et al. 20 41 32 34 127
Roepman et al. 15 35 19 23 92
Total 60 141 99 82 382
9 21 14 12 56
Age Median 68 64 66 67 66 65 68 64 72 67
Gender % Female 36 19 26 29 26 67 33 43 42 43
% Male 64 81 74 71 74 33 67 57 58 57
Smoking % Nonsmoker 8 1 3 2 3 0 0 0 0 0
Mean pack-years 64 72 60 68 66 43 74 62 46 60
Stage % | 66 58 66 55 61 56 57 57 75 61
% Il 25 26 20 37 26 44 33 36 25 34
% Il 5 17 14 9 13 0 10 7 0 5
% IV 3 0 0 0 1 0 0 0 0 0
Grade % Poor 39 15 21 16 21 56 24 43 33 36
% Moderate 58 82 76 76 75 44 76 57 67 64
% Well 3 2 3 8 4 0 0 0 0 0
oS No. patients 42 96 66 67 271 8 19 13 11 51
% 1-y survival 64 89 84 88 84 88 100 82 90 92
% 3-y survival 47 63 59 71 62 15 38 48 60 41
% Tumor Median 90 80 80 93 90
Interquartile range 75-94 60-100 70-90 73-96 60-95
% Necrosis Median 5 5 5 4 5
% Fibrosis Median 15 13 18 10 10
Lymphocytes % Marked 33 31 40 40 36
NOTE: Percent values indicate the proportion of the samples in a particular subtype with a particular variable (e.g., 36% of the
primitive subtype samples came from female patients in the discovery cohort). Some percents may not total 100% due to rounding.
OS percents are Kaplan-Meier estimates. Gray shading indicates data unavailability.
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Fig. 2. Independent validation of lung SCC expression subtypes. Heat maps depict mRNA expression of discovery cohorts (A), the validation cohort (B), a
normal lung centroid (C), and SCC cell lines (D). Microarrays are columns and are labeled with their class. Genes are rows and are ordered by a
discovery cohort hierarchical clustering. The normal lung centroid is scaled to the validation cohort for visualization. Manually selected, lung-relevant,

validation genes are displayed separately for viewability.

the cellular proliferation functional theme, target genes of
the E2F transcription factor, a known proliferation modu-
lator (36), are overexpressed in this subtype as well as two
members of the E2F family, E2F3 and E2F8. Other primi-
tive subtype functional themes are RNA processing and
DNA repair, which could be a consequence of the prolif-
eration theme or an independent process.

The classical subtype exhibits the distinctive functional
theme of xenobiotic metabolism, which detoxifies for-
eign chemicals. One study showed overexpression of this
theme in smokers' versus nonsmokers' airway transcrip-
tomes, including genes such as GPX2 and ALDH3AI

(37). Furthermore, this subtype is enriched with a gene
signature derived from lung cell lines exposed to ciga-
rette smoke, including genes such as AKRIC3 (38).
Interestingly, the classical subtype has the greatest con-
centration of smokers and the heaviest smokers among
the subtypes. This theme, including genes such as GPX2,
AKR1C1, TXNRD1, and GSTM3, was noted as overex-
pressed in one head and neck SCC subtype (group 4
in ref. 39), suggesting a possible relative to the lung
SCC classical subtype. The classical subtype overex-
presses TP63, a transcription factor essential for stratified
squamous epithelium development (40) that is more
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commonly overexpressed and amplified in lung SCC
compared with other histologic types (41). Cytoband
gene overexpression, a proxy for underlying genomic
DNA amplification, suggests that 3q27-28, which con-
tains TP63, is amplified in the classical subtype. The mi-
croarrays of this study do not have enough resolution to
measure TP63 isoform-specific expression, but this may
be a goal of future investigations.

Immune response is the major distinctive functional
theme of the secretory subtype and includes genes such
as Rho GDP dissociation inhibitor 8 (ARHGDIB) and tumor
necrosis factor receptor 14 (TNFRSF14). Consistent with
this theme, the secretory subtype has a NF-«B regulation
theme and NF-«B target gene overexpression. This sub-
type also overexpresses the lung secretory cell markers

mucin (MUC1) and pulmonary surfactant proteins
(SFTPC, SFTPB, and SFIPD; refs. 7, 42). Interestingly,
thyroid transcription factor 1 (NKX2-1/TTF1), known to
be highly expressed in adenocarcinoma (43), is overex-
pressed in the secretory subtype relative to the other
SCC subtypes. This commonality could be a result of
the glandular cell structure of adenocarcinoma, which
perhaps has secretory properties similar to the SCC se-
cretory subtype. A UNC normal lung centroid shows a
very similar expression pattern to the secretory subtype
over the independent validation gene list, which was se-
lected without considering normal samples (Fig. 2C). To
evaluate any possible difference between the secretory
subtype samples and normal samples, an unsupervised
clustering was completed using only these microarrays

Primitive subtype

replication, cell cycle

stimulus

Transcription factor binding sites: E2F, NRF
Drug targets: TYMS, DNMT1, BCL2, CDK2.
Published signatures: Cellular proliferation (34)

Classical subtype

Cytobands. 3q27-28: TP63, BCL6, ABCC5

Secretory subtype

TCIRG1, TLR2, TLR4, IRF7

RIPK2, CASP1, RHOA, TGM2, MYD88, APOL3,

Basal subtype

GJB5, S100A7, KRT5, FABP5, COL17A1, LAMC2

Drug targets: TCN1, MMP3

Proliferation: cell cycle, DNA replication, pyrimidine metabolism, purine metabolism, mitosis, cell division, DNA

MCM10, MCM3, MCM6, BUB1, TIMELESS, POLA1, TYMS, ATIC, PRIM1, CKAP5, CDK2, E2F3, E2F8, CHEK1
RNA processing: mRNA processing, rRNA processing, tRNA processing, Nuclear mRNA splicing via spliceosome
LSM2, SNRPA, CPSF1, EXOSC5, WDR3, PTBP2, TRMT11
DNA repair. base excision repair, nucleotide excision repair, mismatch repair, DNA repair, response to DNA damage

LIG1, PARP1, UNG, SSRP1, RECQL4, KIF22, FANCA, BARD1, GTF2H4
Cellular component: nucleoplasm, spliceosome, nucleolus

Energy metabolism: oxidative phosphorylation, citrate cycle, electron transport chain
COX5B, NDUFBS5, ATP5G3, COX7B, DLD, SDHD, TXN, ATP6V1F
Xenobiotics metabolism: metabolism of xenobioitics by cytochrome p450, glutathione metabolism
ODC1, GSTA4, GSTM4, GSTO1, GPX2, ALDH3A1, AKR1C3, EPHX1, ADH7, G6PD
Cellular component: mitochondrial inner membrane, respiratory chain

Published signatures: Lung cell culture 24 hour smoke exposure (38)

Immune response: complement and coagulation cascade, antigen processing and presentation, natural killer cell
mediated cytotoxicity, leukocyte transendothelial migration, B cell receptor signaling, T cell receptor signaling, toll-like
receptor signaling, immune response, inflammatory response, innate immune response, cellular defense response,
defense response, humoral immune response, T cell activation

SERPINA1, C2, C5, VAV1, GZMB, ITGAM, NFKBIE, ARHGDIB, TNFRSF14, HLA-DPA1, IL32, ALOX5, AlF1, DPP4,

Positive regulation of I-kappaB kinase/NF-kappaB cascade:
Transcription factor binding sites: PEA3, NFKB, AML, IRF1

Cellular component: external side of plasma membrane, lysosome
Drug targets: C1QA, CSF2RA, CSF2RB, IL3RA, ALOX5, DPYD, SOAT1, TCN2

Cell adhesion: ECM recepor interaction, focal adhesion, cell adhesion, cell matrix adhesion, homophillic adhesion
ITGB4, LAMB3, COL11A1, COL17A1, LAMC2, RAC1, ACTN1, PGF, ITGB5, TNFAIP6, CLDN1, HES1, CLSTN1
Epidermal development. epidermis development, keratinocyte differentiation

Cellular component: proteinaceous extracellular membrane, basement membrane, collagen

Fig. 3. Subtype biological functional themes. Significantly enriched gene sets that are overexpressed in a subtype (GSEA preranked, FDR < 0.05) and genes
representative of the set are shown. Pathways and biological processes are organized into functional themes, indicated by italics. Transcription factor
binding site refers to gene sets having a predicted transcription factor binding site. Cellular component refers to gene sets having a particular cellular
location. Drug targets are defined as overexpressed in all pairwise subtype comparisons (FDR < 0.01).
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(Supplementary Fig. S6). Secretory and normal microar-
rays clustered with their group in essentially all cases,
suggesting that the secretory subtype and normal lung
are distinct mRNA expression groups.

The basal subtype expression profile shows a cell ad-
hesion functional theme, including genes such as the la-
minins (LAMB3 and LAMC2), collagens (COL11A1 and
COL17A1), integrins (ITGB4 and ITGB5), and claudin 1
(CLDNT1). Additionally, this subtype has an epidermal
development theme, including keratin 5 (KRT5), psoriasin
(S100A7), and gap junction protein B5 (GJB5). Several of
the genes of the basal subtype, such as COL17A1,
LAMC2, and CDH3, are common with a head and neck
SCC subtype (group 1 in ref. 39) and a breast cancer
subtype (basal-like in ref. 9), suggesting that these differ-
ent organ site subtypes may share biological properties.
The basal subtype overexpresses several S100 family
genes: S100A2, S100A3, S100A7, S100A8, S100A9,
S100A12, and S100A14. S100A8 and S100A9 are highly
expressed in the basal layer in psoriatic epidermal tissue
(44). S100A2 is a marker specific for the basal layer of
the lung epithelium and SCC (45). KRT5 is a basal layer
marker in epithelial tissue (46). The basal subtype is en-
riched with genes whose products are localized in the
basement membrane.

In parallel to differential biological functions are pat-
terns of mRNA expression with implications for pharma-
cologic intervention (Fig. 3). For example, TYMS, a target
of antifolates including pemetrexed, is overexpressed in
the primitive subtype. The antifolate metabolism path-
way is differentially expressed among SCC subtypes, with
the secretory subtype showing underexpression and sim-
ilarity to adenocarcinoma (Supplementary Fig. S7). Over-
expression of TYMS has been shown to be related to
pemetrexed resistance in a dose-dependent manner in
lung cancer cell culture (47). In addition, PARPI, a target
of several drugs in development, is overexpressed in the
primitive subtype.

SCC subtype tumor morphologic and patient
characteristics

The morphologic and patient characteristics of the sub-
types are displayed in Table 1. Grade is significantly asso-
ciated with subtype (P = 0.024, Fisher's exact test). The
primitive subtype has an overrepresentation of poorly dif-
ferentiated tumors, and the basal subtype has an overrep-
resentation of well-differentiated tumors. Tumor stage is
not appreciably different among subtypes, although we
note that the classical and secretory subtypes have in-
creased proportions of stage III tumors. The surgical co-
horts oversample early stages, and possibly, greater
sampling of late-stage patients may find additional sub-
type-stage associations. Specimen quality metrics of per-
cent tumor, percent necrosis, and percent lymphocyte
infiltration are not appreciably different among the sub-
types, arguing against sampling artifacts as the source of
the subtypes. Two cases of WHO morphologic SCC sub-
class were definitively called by pathologist review (one

basaloid in primitive and classical subtypes), suggesting
that these SCC morphologic subclasses are rare.

Patient sex approaches statistically significant associa-
tion with subtype (P = 0.058, Fisher's exact test). Females
are overrepresented in the primitive subtype and males in
the classical subtype. Consistent with the smoking expres-
sion profile of the classical subtype, the classical subtype
has the greatest mean pack-years (73; P = 0.319, Kruskal-
Wallis test) and the lowest proportion of nonsmokers
(1%; P = 0.214, Fisher's exact test), although these obser-
vations do not meet statistical significance.

SCC subtypes have different patient survival outcomes

Overall survival (OS) and RFS outcomes are significant-
ly different among SCC subtypes (Fig. 4). The primitive
subtype has worse OS and RFS compared with the other
subtypes in all stages and in stage I (Fig. 4), whereas the
basal, secretory, and classical seem to have similar out-
comes. Considering the UNC cohort alone, the primitive
subtype outcome is also worse compared with the other
subtypes over all stages (OS: P = 0.066, log-rank test;
RFS: P = 0.004, log-rank test) and stage I (OS: P = 0.057,
log-rank test; RFS: P = 0.007, log-rank test). In the UNC
cohort, 7 of 18 recurrences were extrapulmonary and
the basal subtype had the lowest number and proportion
(0/3). To evaluate the independent contribution of SCC
subtype to patient risk in light of known prognostic fac-
tors, univariate and multivariate Cox proportional hazard
models were constructed (Supplementary Table S2). Signif-
icant univariate predictors were primitive subtype for OS
and RFS and tumor stage for OS. Patient age and tumor
grade were not significant predictors of either outcome. In
multiple variable models, only subtype retained signifi-
cance for OS and RFS. The nonsignificant prediction of
the tumor stage may be due to the underrepresentation of
late-stage patients across the cohorts.

Raponi et al. reported two SCC mRNA expression sub-
types with a survival difference and provided a list of dif-
ferentially expressed genes, where high expression of the
“majority of the genes were downregulated in the high-risk
group” (13). Comparison of Raponi et al.'s microarrays by
their gene list and the subtypes discovered in this study
shows two clear subtype groups: underexpression (primitive
and secretory) and overexpression (basal and classical; Sup-
plementary Fig. S8). Therefore, the four subtypes discovered
in this study map to prior results and this study has divided
each of the prior subtypes into two new ones and improves
the SCC mRNA expression subtype granularity. Interesting-
ly, the Raponi et al. poor survival subtype totals 43% of their
patients, where the poor survival subtype of this study
(primitive) is 16% of their patients. It seems that a fraction
of Raponi et al.'s high-risk subtype shows poor survival out-
come relative to the remainder of SCC.

SCC subtypes are similar to different normal lung cell
types and SCC cell lines

To evaluate the hypothesis that SCC subtypes are de-
rived from different cell types present in the normal lung,
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SCC subtypes were compared by mRNA expression to
three published model systems. The first model, “Mouse
lung development,” is a time series of mouse lungs ex-
tracted from embryonic stages to adult (21). Expression
similarity is defined as high positive Pearson correlation
between an SCC subtype and time points within the mod-
el. The primitive subtype shows expression similarity to
early-stage mouse lung, and the secretory subtype shows
similarity to late-stage mouse lung (Fig. 5A). The second
model, “Human bronchial epithelial cell air liquid inter-
face culture” (HBEC-ALIC), is a time series of cultured
normal, healthy, human bronchial epithelial cells, in
which the early time points consist of stratified basal cells
and later time points include secretory and ciliated cells
(22). The basal subtype showed expression similarity to
the early time points during which basal cells are predom-
inant (Fig. 5B). The primitive and secretory subtypes
show expression similarity to the later time points at
which there are secretory and ciliated cells. The third
model system, “Human microdissected lung cell compart-
ments” (HMLCC), was laser capture microdissected cells
contained in surface epithelium and in submucosal glands
of normal healthy lung (20). The secretory subtype over-
expresses genes that are overexpressed in submucosal
glands (Fig. 5C). The basal subtype overexpresses genes
that are overexpressed in surface epithelia. The classical

subtype does not show appreciable similarity to any spe-
cific lung model, is the only subtype to have this property,
and could be most similar to multiple or unobserved cell
types. Therefore, by the combination of all three lung
models, three of the four SCC subtypes have unique
similarities to different, normal lung cell types.

In addition to the cell type models, SCC subtypes may
correspond to different SCC cell lines, which could estab-
lish additional manipulatable models for future investiga-
tions into subtype biology. To ascertain if SCC cell lines
correspond to different SCC tumor subtypes by mRNA ex-
pression, four published SCC cell line microarrays (23)
were given subtype classifications by the nearest-centroid
predictor. Interestingly, the four cell lines were predicted
to be different subtypes (Fig. 2D). Expression of the sub-
types between the cell lines and tumors is consistent over
the validation gene set (Fig. 2A and D). For example, genes
are consistent and mutually exclusive in the cell lines as
predicted (HCC15, primitive and MCM10; HCC95, classi-
cal and AKR1C3; HCC2450, secretory and MUC1; H157,
basal and MMP13).

Discussion

The principal novel hypothesis tested in this study is
that lung SCC expression subtypes exist, are reproducible,
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are clinically relevant, and exhibit patterns that correlate tory subtype has many features of lung secretory cells, such
with unique cell types in the normal lung. These subtypes as surfactant and mucin overexpression, similarity to secre-
(primitive, basal, secretory, and classical) were identified tory cells in the HBEC-ALIC model, and similarity to sub-
in an unbiased and objective manner and are supported mucosal glands in the HMLCC model. The primitive
by cross-cohort validation using five training cohorts and subtype has a cellular proliferation functional theme, the
by independent validation using a sixth cohort, which to- worst survival outcome, an overabundance of female pa-
gether total 438 patients. The expression subtypes were al- tients, the most nonsmokers, and an overabundance of
so found in a wide variety of patient populations from the poorly differentiated tumors. This subtype is similar to
United States, Asia, and Europe, in a wide variety of cohort early embryonic mouse lungs, where primitive, less differ-
sizes from 36 to 127. All cohorts showed approximately entiated cells may be predominant and would be consis-
the same subtype proportions (overall: primitive, 16%; tent with the poorly differentiated nature of these tumors.
classical, 37%; secretory, 26%; basal, 21%). These sub- The primitive subtype also has similarity to late-stage
types were associated with tumor differentiation and pa- HBEC-ALIC, which could be explained by lung “transient
tient sex. Survival outcomes are significantly different expression” in which differentiation markers are expressed
among the subtypes, and subtype is an independent pre- during early lung formation and again in the developed
dictor of survival. Possible limitations of our analysis in- lung (48). Alternatively, a late-emerging and late-active
clude possible sample quality artifacts or patient behavior, cell type in HBEC-ALIC may be most similar to the em-
such as smoking immediately before surgery; however, all bryonic mouse lung. The classical subtype exhibits fea-
six cohorts showed the same results, so any limitation tures representative of typical lung SCC, including the
would have to occur in six large, independently collected highest prevalence at 37%, overabundance of males,
cohorts. greatest patient smoking behavior, overexpression of
The SCC expression subtypes are biologically distinct TP63, and putative amplification of the TP63-containing
and show similarities to distinct normal lung cell popula- locus 3q27-28.
tions. These biological characteristics serve as the basis for The distinct SCC subtype to cell population similari-
the SCC nomenclature. The basal subtype exhibits many ties could be explained by the SCC subtypes having dif-
characteristics of lung basal cells, such as cell adhesion ferent ancestor cells. These different ancestor cells could
and epidermal development functional themes, S100A2 be cell types of distinct lineages or cellular differentia-
and KRT5 basal cell markers, overexpression of genes tion stages such as proposed in breast cancer (49). This
whose products are localized in the basement membrane, scenario provides a reason why the SCC subtypes have
similarity to basal cells in the HBEC-ALIC model, and sim- dramatically different mRNA expression. The subtypes
ilarity to surface epithelia in the HMLCC model. The secre- could arise by genetic mutation from different ancestors
A Mouse lung development B Human bronchial epithelial cell Cc Human microdissected
air liquid interface culture (HBEC-ALIC) lung cell compartments (HMLCC)
Surface epithelium
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Fig. 5. SCC subtypes compared with lung cell type models. The relationship of relative SCC subtype expression differences to relative expression
differences of published lung model systems. A and B, the models Mouse lung development (21) and HBEC-ALIC (22) are microarray time series, where
time is indicated on the horizontal axis. Points mark Pearson correlation coefficients of SCC subtype centroids to model time points using the top
1,000 genes having the greatest Pearson correlation coefficient with time. Bars represent 95% confidence intervals. Lines connect points corresponding
to the same subtype. Large positive correlations indicate mMRNA expression similarity, whereas large negative correlations indicate dissimilarity.

In A, “e” refers to embryonic day and “p” refers to postnatal day. C, the model HMLCC (20) is compared with SCC subtypes via a heat map of genes that are
overexpressed in submucosal glands and in surface epithelium as rows and subtype centroids in columns.
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that have different mRNA expression, and this ancestral
mRNA expression could persist in progeny tumor cells.
This putative subtype ancestral cell information could be
used in developing SCC subtype pharmacologic inter-
ventions that exploit differences in the ancestral cell
types. A caveat to our interpretation of SCC subtype to
cell population similarity is that the similarity could be
caused by coincidence and expression similarities could
reflect similar biology and not similar origin. The lung
has multiple proposed cellular development pathways,
and future studies that describe the molecular profiles
of the lung cell types or lung cancer stem cells would
further clarify the putative ancestral cells of the SCC
subtypes (50).

The SCC subtypes may have applications in patient
care and in cancer research. For instance, patients with
the primitive subtype could be treated more aggressive-
ly because of the poor survival expectation of this sub-
type or could be given a more accurate prognosis than
by using traditional prognostic factors alone. Basic
cancer research could be conducted using the subtype
model system partners described in this study. The
SCC subtypes could be useful for therapy benefit stud-
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Supplementary material for:

Wilkerson, M.D. et al. (2010) Lung squamous cell carcinoma mRNA expression
subtypes are reproducible, clinically-important and correspond to different normal
cell types.

Acquisition, quality control, and processing of published lung SCC microarrays

Clinical and microarray data were downloaded from websites for the Bild et al, Expo,
Raponi et al, and Roepman et al discovery cohorts (Supplemental Table 1). Arrays were
unbiasedly reviewed for possible technical artifacts suggestive of probe hybridization
irregularities using spatial intensity, overall intensity, relative log expression, normalized
unscaled errors, mRNA degradation and overall intensity plots. Arrays showing evidence
of possible technical artifacts were removed from further analysis. Discovery cohorts
were reduced to those with an SCC diagnosis. The following SCC microarrays were
removed: Bild et al - 0176_6612 h133+ 97-403.cel; Expo - GSM231874; Raponi et al —
GSM102217, GSM102215. The removed Raponi et al microarrays were noted in the
original publication as having reduced quality. All microarray platform probes were
mapped to a common gene database to create gene expression values. A database of
curated mRNA transcripts corresponding to human genome build 36.1 and GenBank
release 161 was downloaded' (1). Separately for the Affymetrix U133 Plus 2.0,
Affymetrix U133A and UNC custom Agilent 44,000 platforms, probes were aligned to
transcripts by BLAT (2) and probes with completely identical, same strand, no-gap
alignments to exactly one gene were retained. Raponi et al array transcripts were aligned
to this database and transcripts with 90% identical, no-gap alignments to exactly one gene
were retained. Roepman et al Unigene identifiers were mapped to gene symbols. For
cohorts with Affymetrix CEL files, expression values were calculated using the Robust
Multiarray Average (3) and the custom mapping. Otherwise, probes or transcripts
matching the same gene were averaged. Raponi et al expression values were log2
transformed to be on the same scale as the other cohorts. Final platform and cohort gene
counts are listed in Supplementary Table 1. Cohort clinical variable levels were mapped
to common scales where needed including grades moderate-poor and moderate-well
mapped to moderate and age range mapped to the range mean.

Ross et al microarrays were processed into gene expression values by Robust Multi-
Array Average (3) and the custom gene mapping. Ross et al microarrays were reduced to
the common time points among the three patients. Patient median gene expression was
calculated for each time point. Mariani et al mouse microarrays were processed by
Robust Multi-Array Average (3). Human-mouse homologous genes were downloaded
from NBCI Homologenez. Mariani et al genes were mapped to human homologs and
genes not in a one-to-one relationship were removed. All SCC cell lines from Zhou et al
microarrays were processed into gene expression values by Robust Multi-Array Average
(3) and the custom gene mapping. Ross et al, Mariani et al, and Zhou et al data were
gene median centered. Final gene counts are in Supplementary Table 1.

Unsupervised subtype discovery and multi-cohort classification adjustment.

! ftp://ftp1.nci.nih.gov/tcga/other/integration/db/SpliceMiner 9606 TranscriptDB_36.1.zip
? ftp://ftp.ncbi.nih.gov/pub/HomoloGene/; version Feb. 14, 2008



Consensus Clustering provides quantitative stability evidence for judging the number of
clusters in a microarray dataset (4). This stability evidence, termed consensus, is the
proportion that two microarrays are clustered together over a large number of microarray
subsamplings. All discovery cohorts’ consensus empirical cumulative distributions have
modes near 0 and 1 (Supplemental Fig 3B) indicating that tumors have high consensus to
some tumors and low consensus to others which is evidence for clusters (4). Consensus
proportional increases approached a minimum at four clusters in all cohorts, which shows
that additional clusters are similar to random divisions (Supplemental Fig. 3B, C).
Consensus matrices demonstrate high intra-cluster consensus and low inter-cluster
consensus at four clusters, confirming four as a stable cluster number (Supplemental Fig.
3A). All cohorts’ cluster tracking plots demonstrated that each of four clusters comprised
> 10% of samples in a cohort and that additional clusters were small (Supplemental Fig.
3D). The Expo dataset had an equivalently sized 5" cluster. A likely cause for this
additional Expo cohort cluster is that this cohort is the smallest and the paucity of
samples complicates detection of exactly 4 clusters as in the other cohorts. By sum of
this evidence, four clusters were selected as a common, empirically-supported number of
expression clusters in all discovery cohorts.

In order to derive the optimal sample classification given all of the data rather than data
from its source cohort, a multi-cohort classification step was completed. Multi-cohort
centroids were built by taking the median of each centroid group (A, B, C, D in
Supplemental Fig 4). Then, all arrays were classified by taking the maximum Pearson
correlation to these multi-cohort centroids. After this adjustment, group D was found in
the Lee et al dataset. We note that group D was also found in Lee et al at a higher
consensus cluster count (data not shown). An average of 15% of a cohort’s arrays
changed classification; thus, a minority of arrays had their classification modified.

The Raponi et al cohort contained one patient assayed by two microarrays. Both arrays
were the same subtype and we retained one patient record for clinical analysis.



Supplement Table 1: Data source, probe annotation and array counts.
Lung SCC Patient Cohorts

Model Datasets

UNC Bild et al. Expo * Leeetal.® Raponietal.* Roepman etal.’ Ross et al ° Marianietal'  Zhouetal®
Institution University of Duke University International Sungkyunkwan  University of European
North Carolina Genomics University Michigan Microarray
Consortium Consortium
Microarray platform Agilent 44K Affymetrix Affymetrix Affymetrix Affymetrix Agilent 44K whole Affymetrix U133 Affymetrix Affymetrix
custom U133 Plus 2.0 U133 Plus 2.0 U133 Plus 2.0 U133A genome Plus 2.0 Mu11K subA U133A
and subB
Expression level probe probe probe probe gene probe probe probe probe
Expression format sample / Affymetrix CEL  Affymetrix CEL  Affymetrix CEL ~ MAS5 Log?2 ratio Affymetrix CEL Affymetrix CEL  Affymetrix CEL
common files files files (sample/common files files files
reference reference)
Published probe probe probe probe Affymetrix Unigene and other | probe probe probe
annotation sequences sequences sequences sequences Transcript sequences sequences sequences
Lung squamous cell 56 53 37 75 130 92 - - 4
carcinoma array
count
Array count with - 52 36 75 128 92 30 11 4
acceptable quality
control
Probes/Transcripts 39,980 604,258 604,258 604,258 22,283 44,290 604,258 8,828 247,965
on array
Probes on array 31,035 318,205 318,205 318,205 - - 318,205 - 195,448
mapping to exactly
one gene
Transcripts mapping - - - - 17,320 29,734 - 6,286 °
to exactly one gene
Final Gene count 17,109 17,537 17,537 17,537 11,865 15,263 17,537 6,286 12,301
Genes in common 9,515
across cohorts
Genes meeting 9,229

reliability condition
across cohorts

1. http://data.genome.duke.edu/oncogene.php and (5)

2. ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/ GSE2109/GSE2109%5FRAW%2Etar

3.(6)

4. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4573 and (7)
5. http://research.agendia.com/ and (8)

6. (9)
7.(10)
8. (11)

9. Human ortholog gene counts.




Overall survival Relapse-free survival
Hazard ratio (95% CI) Hazard ratio (95% ClI)
univariate
Primitive subtype vs. others 1.83 (1.18-2.86)* 240 (1.49-3.86)*
Stage 1.24 (1.10-1.40)* 1.15 (0.98-1.36)
Grade 1.12  (0.65-1.94) 1.73 (0.97-3.10)
Age 270 0.93 (0.64-1.37) 1.03  (0.63-1.69)
multivariate
Primitive subtype vs others 1.95 (1.11-3.43)* 2.03 (1.08-3.80)*
Stage 1.17  (0.99-1.37) 1.13  (0.92-1.38)
Grade 0.98 (0.56-1.72) 143 (0.77-2.65)
Age 270 0.84 (0.51-1.41) 1.14 (0.60-2.17)

Supplement Table 2: Cox proportional hazards models. Cox proportional hazards
models used all available data, have tumor stage coded as a number 1-7 for stage IA
through IV, grade coded as poorly differentiated or other, and age coded as greater than
or equal to the median patient age, 70 (* P <0.05).



Figure Legends.

Supplement Figure 1: Subtype exemplar H&E images.
Pathologist-reviewed exemplars of each subtype (A — primitive, B- classical, C —
secretory, D — basal) are displayed. The scale in A also applies to B-D.

Supplement Figure 2: SCC subtype discovery and validation procedure.

Supplement Figure 3: Consensus clustering of discovery cohorts.

Consensus clustering results from the discovery cohorts are shown as rows. Consensus
matrices are symmetrical and represent consensus values at a particular cluster count (k)
between two microarrays (A). Consensus is the proportion that two microarrays occur in
the same cluster out of number of subsample iterations. Consensus is shown according to
the color range of dark blue for a consensus value of 1 and white for a consensus value of
0. The clusters are indicated by the colored rectangles atop the matrix according to the
color legend within each cohort (A). Empirical cumulative consensus distributions are
shown for different k£ (B). Consensus proportional increase plots show the change in area
under the curve in (B) in comparing k relative to k-1 (C). Item tracking plots show the
cluster assignment of microarrays in columns over different & clusterings, colors indicate
the same cluster (D). The consensus matrices’ clusters colors correspond to the cluster
tracking plot colors. For further details, refer to the Consensus Clustering publication (4).

Supplement Figure 4: Correlation matrix and clustering of unsupervised centroids
from discovery cohorts.

Cells are labeled by discovery cohort and centroid where the centroid number is taken
from unsupervised clustering (Supplement Fig. 3). Cells in the matrix represent the 1 —
Pearson correlation coefficient between two discovery cohort centroids by a degree of
shading according to the scale above (B). For example, Roepman4 and Bild2 have
highly similar expression profiles, have a large Pearson correlation coefficient, a small 1
— Pearson correlation coefficent value and is shaded darkly. The matrix is ordered by
columns and rows by the dendrogram at the top of the matrix (A). The dendrogram is the
result of an agglomerative, average linkage, hierarchical clustering using the correlation
matrix. Four centroid groups are marked (C). All cohorts have one member in each
centroid group with one exception: Lee et al. does not have a centroid in group D. Lee et
al. has an extra centroid, Lee3, clustered with group B that is less similar to the group
than Lee4, and so Lee3 excluded from this centroid group (*). Expo5 represents a small
cluster of 3 microarrays (**). Because Expo5 is clustered with group C and Expo3 is
more similar to the group, Expo5 is not included in centroid group D.



Supplement Figure 5: Protein expression by immunohistochemistry. Protein
expression was evaluated by pathologist review of immunohistochemical staining
intensity of tumor cells via a tissue microarray. Scores are the proportion of tumor cells
(0-100) multiplied by their immunohistochemical stain intensity (0-3). Scores were
standardized prior to agglomerative average-linkage hierarchical clustering and are
displayed as a heatmap in which columns are tumor samples (A), and rows are genes
targeted by antibodies shown in parentheses. One exemplar per subtype is displayed in
rows and immunohistochemical stains in columns (B).

Supplement Figure 6: Unsupervised clustering of squamous secretory subtype and
normal microarrays. The top 1,000 variable genes, measured by median absolute
deviation, were used for unsupervised clustering (A) and heatmap display (B). The
clustering was agglomerative, average linkage, hierarchical clustering using 1-Pearson
correlation coefficient as distance. Microarrays were gene-median centered prior to
clustering. Secretory subtype and normal microarrays are marked by the colored
rectangles (C) according to the legend. Representative genes are shown (D).

Supplement Figure 7: Comparison of methotrexate (antifolate) drug metabolism
pathway among lung squamous subtypes. Pathway is derived from PharmGKB
Methotrexate drug metabolism pathway’. SCC subtype centroid gene expression is
represented by the color scale. An adenocarcinoma centroid is presented for comparison.
The adenocarcinoma centroid has the squamous gene medians subtracted, so that it is on
the same scale as the squamous subtype centroids. Expression data is from UNC cohort
and unpublished local adenocarcinoma samples.

Supplement Figure 8: Comparison to previously published subtypes. A heatmap
shows expression of the Raponi et al subtype genes, as rows, for the Raponi et al
microarrays, as columns. Microarrays are grouped and labeled by the subtypes defined in
this study, indicated by the colored rectangles.

? http://www.pharmgkb.org/do/serve?objld=PA2039
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