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pose: Lung squamous cell carcinoma (SCC) is clinically and genetically heterogeneous, and current
ostic practices do not adequately substratify this heterogeneity. A robust, biologically based SCC
ssification may describe this variability and lead to more precise patient prognosis and manage-
We sought to determine if SCC mRNA expression subtypes exist, are reproducible across multiple
t cohorts, and are clinically relevant.
erimental Design: Subtypes were detected by unsupervised consensus clustering in five published
ery cohorts of mRNA microarrays, totaling 382 SCC patients. An independent validation cohort of
C patients was collected and assayed by microarrays. A nearest-centroid subtype predictor was built
discovery cohorts. Validation cohort subtypes were predicted and evaluated for confirmation.
pe survival outcome, clinical covariates, and biological processes were compared by statistical
ioinformatic methods.
ults: Four lung SCC mRNA expression subtypes, named primitive, classical, secretory, and basal,
etected and independently validated (P < 0.001). The primitive subtype had the worst survival

me (P < 0.05) and is an independent predictor of survival (P < 0.05). Tumor differentiation and
t sex were associated with subtype. The expression profiles of the subtypes contained distinct bio-
l processes (primitive: proliferation; classical: xenobiotic metabolism; secretory: immune response;
cell adhesion) and suggested distinct pharmacologic interventions. Comparison with lung model
s revealed distinct subtype to cell type correspondence.
clusions: Lung SCC consists of four mRNA expression subtypes that have different survival
Con

outcomes, patient populations, and biological processes. The subtypes stratify patients for more precise
prognosis and targeted research. Clin Cancer Res; 16(19); 4864–75. ©2010 AACR.
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g cancer is the leading cause of cancer-related death
wide (1). Squamous cell carcinoma (SCC) is a major
and comprises ∼30% of all pulmonary tu-
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nization and/or desmosomes (intracellular bridges;
. Clinically, SCC tumors occur more often in smokers
ales compared with the other histologic types (2, 5).
ts affectedwith SCC tumors show awide range of clin-
tcomes. For instance, 83% of autopsied SCC patients
gionalmetastases (5) and 68% of SCC stage I patients
ed beyond 5 years (6). Within SCC, there is noticeable
hologic variability, especially among poorly differenti-
umors (4, 7). The WHO SCC type includes a stratifica-
f this variability with four variants (papillary, small
lear cell, and basaloid; ref. 4), but their prevalence
inical and biological significance remain unclear. Be-
there is significant pathologic and clinical outcome
ility within the SCC histologic type, a robust, biolog-
derived subclassification may be valuable.
ent years have seen progress in classification of a va-
f malignancies using full-genome molecular assays,

rily those directed at mRNA expression [e.g., leuke-
8), breast (9), and lung adenocarcinoma (10)]. A
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Translational Relevance

Lung squamous cell carcinoma (SCC) has broad
clinical, genetic, and morphologic heterogeneity. Cur-
rently, there is no subclassification that adequately de-
scribes this variability and SCC patients are basically
treated as though they have the same disease. One ex-
planation for SCC variability is that SCC is not a sin-
gular disease but a mixture of multiple discrete
diseases or subtypes defined by innate biological dif-
ferences. Using five discovery cohorts and an indepen-
dent validation cohort totaling 438 patients, we show
that SCC is composed of four robust mRNA expression
subtypes (named primitive, classical, secretory, and
basal). The subtypes have significantly different surviv-
al outcomes, patient populations, and biological pro-
cesses. Using these subtypes as a basis for a future
clinical diagnostic assay, patients could receive a more
precise prognosis. Additionally, we described model
system partners for the subtypes that can be used for
targeted basic research.

Lung Squamous Cell Carcinoma mRNA Expression Subtypes

www.a
sful approach is unsupervised class discovery, which
s naturally occurring tumor classes (“mRNA expres-
ubtypes”) without prespecified characteristics such
ient survival (8). Preliminary efforts have been made
, suggesting the existence of SCC mRNA expression
es. In independent analyses, investigators (11–13)
ered two mRNA expression subtypes with intriguing
ical profiles and a corresponding patient survival
nce. These studies show that SCC might be subclas-
using mRNA expression into groups with clinical rel-
e; however, the studies were not done in a manner
alidated either the number or the nature of these
ing classes. A validated mRNA expression classifica-
ould substantially progress patient care and research
g SCC. In this study, we describe four novel repro-
le expression subtypes (primitive, classical, secretory,
asal) of lung SCC. The SCC subtypes have different
al outcomes, patient demographics, physical char-

stics, biological processes, and correspondence to for cl

medi
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value
same
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Subty
al lung cell types.

rials and Methods

r collection
zen, surgically extracted, macrodissected, primary tu-
from treatment-naive patients at the University of
Carolina with a lung SCC diagnosis were collected
Institutional Review Board approved protocols 90-
and 07-0120. Morphologic quality control was
on a review of a representative H&E-stained section
paraffin-embedded tissue immediately adjacent to

zen tissue for confirmation of squamous histology
r pathologists (Supplementary Fig. S1) and for quan-

Cen
array

acrjournals.org
ion of tumor content. Tumor RNA was extracted (14)
ssayed for mRNA expression using Agilent 44,000
microarrays for a total of 56 microarrays. Microar-
ere processed by normexp background correction
ess normalization (15). This data set is referred to
“validation cohort” and was deposited at National
r for Biotechnology Information (http://www.ncbi.
ih.gov/geo/query/acc.cgi?acc=GSE17710).

shed data sets
ructured search for publicly available SCC mRNA ex-
on microarray data sets was conducted via Gene Ex-
on Omnibus and PubMed and manually selecting
ets that have a large number of lung SCC samples
rmit subtype analysis and that have significant
data set gene reliability, as measured by integrative
ations (16). This search yielded five data sets (referred
the “discovery cohorts”) from the following studies:
t al. (17), Expression Project for Oncology (Expo;
/www.intgen.org/expo/), Lee et al. (18), Raponi et al.
andRoepman et al. (19). Published cohorts contained
al resections from treatment-naive patients if indi-
Clinical data and raw or processed microarray data
obtained. Only microarrays with SCC histology
retained. Raw microarrays or gene lists from lung
l systems were obtained (20–23). Microarrays were
ted to standard quality assessments, mapped to a
on transcript database, and processed into gene-
expression values (Supplementary Table S1).

pervised subtype discovery
subtype discovery and validation procedure is

ted in a flowchart (Supplementary Fig. S2). Genes
igh reliability and variability were selected similar
viously described methods (9, 10, 12, 13, 16). Gene
ility was measured by integrative correlations, and
having an estimated false discovery rate (FDR) of
were retained (16). To select variable genes, genes
h discovery cohort were ranked by median absolute
ion in decreasing order. These ranks were averaged
eranked to make a single, ranked gene list. The top
of this ranked list, totaling 2,307 genes, was used
ustering. Before clustering, each data set was gene
an centered (24, 25). Subtypes were determined
h discovery cohort by the Consensus Clustering
ithm via ConsensusClusterPlus (26, 27). This
thm completed 1,000 microarray subsamples at a
rtion of 80% and clustered these subsamples by an
erative average-linkage hierarchical algorithm using

rson correlation coefficient distance. Consensus
s, the proportion that two microarrays occupy the
cluster, were calculated and then clustered by an
erative average-linkage hierarchical algorithm using
ean distance.

pe summarization by centroids

troids are median expression profiles of a group of
s and were prepared using methods previously

Clin Cancer Res; 16(19) October 1, 2010 4865



descri
group
and o
troids
taking

Differ
Dif

standa
tween
GeneM
packa
effects
used
ranked

Valid
Sub

by a n
previo
was b
genes
error r
differe
type t
impro
lists,
online

Survi
The

analys
were c
and n
met th
surviv
until

Immu
Cor

tissue
ray bl
sembl
(Dako
MCM

Com
sion 2
librari
specif

Resu

Unsu
subty
Lun

theref
analys

sets to
diseas
analyz
using
previo
Cluste
an op
Result
(Supp
dence
cluste
files,
lowed
struct
one c
There
found
expre
each
used
lished
these
ture a
dence
signif
the su
amon
chara
expres
tory,

SCC s
Alth

valida
horts,
covery
valida
types
To te
using
and h
Using
for m
mors
in th
preva
which
validi
chara
was c
We co
genes
the d
uniqu
conco
across

Wilkerson et al.

Clin C4866
bed (25, 28). Centroids were determined by taking a
of microarrays from a gene median centered cohort
btaining the median of each gene. Multicohort cen-
are determined by taking a group of centroids and
the median of each gene.

entially expressed genes
ferentially expressed genes were determined by a
rdized mean difference procedure that considers be-
cohort and within-cohort variation (29) using the
eta Bioconductor library (http://bioconductor.org/

ges/2.2/bioc/html/GeneMeta.html) and a random
option. Gene set enrichment analysis (GSEA) was

to determine gene sets significantly enriched in
gene lists (30).

ation cohort subtype prediction
type status of the validation cohort was predicted
earest-centroid classification algorithm following
usly published methods (28). In brief, the predictor
uilt, using only the discovery cohorts, by adding
to a balanced centroid, assessing subtype prediction
ates by leave-one-out cross-validation, adding genes
ntially expressed from the most mispredicted sub-
o its centroid, and stopping once accuracy failed to
ve. Subtype predictor centroids, unsupervised gene
and all gene multicohort centroids are available
(http://cancer.unc.edu/nhayes/publications/scc/).

val analysis
R library survival was used for survival statistical
es. Patients dead within 1 month following surgery
onsidered to have procedure-related complications
ot considered in survival analyses. Five patients
is condition all from the UNC cohort. Relapse-free
al (RFS) time was defined as the time from surgery
first relapse or death.

nohistochemistry
es (1 mm) were taken from available UNC cohort
blocks and randomly organized into tissue microar-
ocks. Consequal 4-μm array block sections were as-
ed on array slides and stained with H&E, MAC387
), p63 (Dako), CK7 (Leica Microsystems), and
6 (Santa Cruz Biotechnology).

putational procedures were executed using R ver-
.7.1 (http://www.r-project.org/) and Bioconductor
es (http://www.bioconductor.org) unless otherwise
ied.

lts

pervised discovery of lung SCC expression
pes in five cohorts
g SCCs are a heterogeneous group of tumors, and

ore, we did a common set of mRNA expression
es using five previously published lung SCC data

that t
yond

ancer Res; 16(19) October 1, 2010
determine how many distinct subtypes/groups of
e might exist. These five discovery cohorts were
ed for the presence of mRNA expression subtypes
the Consensus Clustering methodology (26) as
usly described for lung cancer (10). Consensus
ring is a semiquantitative method for determining
timal number of mRNA expression clusters/groups.
s show that all five cohorts contain four clusters
lementary Fig. S3). There is no compelling evi-
for a higher number of clusters. To test if the four
rs from each cohort have the same expression pro-
a published centroid clustering method was fol-
(10). The centroid clustering shows a four-group

ure, where each cohort is in each group, with only
ohort absent in one group (Supplementary Fig. S4).
fore, the four clusters (mRNA expression subtypes)
in the five discovery cohorts have consistent

ssion profiles. To derive the optimal subtype for
patient, a multicohort centroid classification was
to assign each patient to a subtype, similar to pub-
methods (28). A centroid clustering based on

optimal subtypes again shows a four-group struc-
nd complete, unambiguous cross-cohort correspon-
(Fig. 1). The cross-cohort clustering is statistically

icant [Sigclust (31) P values in Fig. 1]. Interestingly,
btypes have approximately the same prevalence
g the discovery cohorts (Table 1). Using biological
cteristics described below, the lung SCC mRNA
sion subtypes are named primitive, classical, secre-
and basal.

ubtype independent validation
ough the four SCC subtypes were “cross-cohort”
ted in that they were repeatedly found in five co-
this validation was not independent because dis-
co-occurred with validation. For an independent

tion, we tested the hypothesis that the SCC sub-
will exist in a new discovery-independent cohort.
st this hypothesis, a subtype predictor was built
the discovery cohorts, which consisted of 208 genes
ad 94% leave-one-out cross-validation accuracy.
this predictor, subtype classifications were made
icroarrays from a new cohort of 56 lung SCC tu-
collected at UNC. All four subtypes were predicted
e UNC cohort and in approximately the same
lence as the discovery cohorts (Fig. 2; Table 1),
supports subtype reproducibility. To confirm the

ty of the predictions, a comparison of expression
cteristics between the discovery and UNC cohorts
ompleted similar to a recent related study (32).
mpiled a large validation gene set of the top 100
overexpressed and underexpressed per subtype of
iscovery cohorts (Fig. 2A), which yielded 1,117
e genes. Subtype expression patterns are highly
rdant between the discovery and UNC cohorts
the validation gene set (Fig. 2A and B), confirming
he large-scale expression patterns are consistent be-
the predictor gene set. In addition, the subtypes of

Clinical Cancer Research
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www.a
NC cohorts are a statistically significant partition of
NA expression [SWISSMADE (33) subtypes versus
m classes; P < 0.001]. We conclude that the prede-
SCC subtypes exist in the UNC cohort and are,
ore, independently validated.
reliminarily evaluate if clinically applicable biomar-
an distinguish the subtypes, we selected one overex-

orresponding binary split.
d gene per subtype (basal, S100A8; classical, TP63;
ory, KRT7; primitive, MCM6) for immunohisto-

icantl
exact

acrjournals.org
ical protein expression comparison using a tissue mi-
ay subset of the UNC cohort (n = 38). All antibodies
ing these genes, except MCM6, had sufficient stain-
r analysis. Protein expression clustering using basal,
al, and secretory samples revealed three essentially
ally exclusive groups with one marker defining each
(Supplementary Fig. S5). These groups were signif-
Discovery cohort correlation matrix and dendrogram. Cells are labeled by discovery cohort and adjusted centroid, where A to D are from
mentary Fig. S4. B, Cells in the matrix represent the 1-Pearson correlation coefficient between two discovery cohort and adjusted centroids by
according to the scale above. For example, BildA and RoepmanA have highly similar expression profiles, a large Pearson correlation coefficient, a

-Pearson correlation coefficient value, and corresponding cells darkly shaded. A, the matrix is ordered by columns and rows by the dendrogram
op of the matrix. The dendrogram is the result of an agglomerative, average-linkage, hierarchical clustering using this correlation matrix. C, four
y associated with tumor subtype (P = 0.007, Fisher's
test). This suggests that SCC subtypes can also be

Clin Cancer Res; 16(19) October 1, 2010 4867
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guished by immunohistochemistry, and future
may find the optimal panel of immunohistochemi-
tibodies.

pes exhibit distinct biological processes
discern biological processes associated with each
e, subtype mRNA expression was evaluated for en-
ent in gene ontology, pathway, transcription factor
g site, and cytoband gene sets by GSEA (30). Be-

of the inherent redundancy in biology, we have col-
these processes into functional themes (Fig. 3).
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le 1. Clinical characteristics
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percents are Kaplan-Meier estimates. Gray shading indicates data una

ancer Res; 16(19) October 1, 2010
subtypes are described in terms of overexpression
e to the other subtypes.
distinctive functional theme of the primitive sub-
s cellular proliferation, which includes genes such
ichromosome maintenance 10 (MCM10), E2F transcrip-
ctor 3 (E2F3), thymidylate synthetase (TYMS), and
rase α1 (POLA1), and a published proliferation sig-
(34). This proliferation theme is overexpressed in
ost rapidly growing breast cancer cell lines (35)

n the most poorly differentiated, poor survival
rs from various organ sites (34). Complementary to
of lung SCC expression subtypes
vailability.
Clinica
l Cancer R
esear
Primit
Disc

ive Classi
overy coh

cal Secre
orts

tory Basal
 Total
 Primit
Valida
tion cohor
t (UNC)
ive Classi
cal Secre
tory Basal
 Total
ld et al. 7
 20
 15
 10
 52

e et al. 14
 30
 22
 9
 75

Expo 4
 15
 11
 6
 36

oni et al. 20
man et al. 15
41
35
32
19
34
23
127
92
Roep
Total 60
 141
 99
 82
 382

9
 21
 14
 12
 56
M
edian 68
 64
 66
 67
 66
 65
 68
 64
 72
 67
r %
%

Female 36
Male 64
19
81
26
74
29
71
26
74
67
33
33
67
43
57
42
58
43
57
ng % N
Mean
onsmoker 8
pack-years 64
1
72
3
60
2
68
3
66
0
43
0
74
0
62
0
46
0
60
% I 66
 58
 66
 55
 61
 56
 57
 57
 75
 61

% II 25
 26
 20
 37
 26
 44
 33
 36
 25
 34

% III 5
% IV 3
17
0

14
0

9
0

13
1

0
0

10
0

7
0

0
0

5
0

%
 Poor 39
 15
 21
 16
 21
 56
 24
 43
 33
 36

% M

%

oderate 58
Well 3
82
2

76
3

76
8

75
4

44
0

76
0

57
0

67
0

64
0

No.
 patients 42
 96
 66
 67
 271
 8
 19
 13
 11
 51

% 1
% 3
-y survival 64
-y survival 47
89 84 88 84 88
 100
38
82
48
90
60
92
41
63 59 71 62 15
or M
Interqu
edian
artile range
90
 80
4 60-10
80
0 70-9
93
0 73-96
90
60-95
75-9
rosis M
edian
 5
 5
 5
 4
 5
ec
ibrosis Median 15 13 18 10 10
phocytes % Marked 33 31 40 40 36

E: Percent values indicate the proportion of the samples in a particular subtype with a particular variable (e.g., 36% of the
itive subtype samples came from female patients in the discovery cohort). Some percents may not total 100% due to rounding.
ch



the ce
the E2
lator (
memb
tive su
DNA
eratio
The

theme
eign c
theme
tomes

(37).
signat
rette
Intere
centra
the su
AKR1
presse
in ref
SCC

Fig. 2.
normal
discovery cohort hierarchical clustering. The normal lung centroid is scaled to the validation cohort for visualization. Manually selected, lung-relevant,
validati

Lung Squamous Cell Carcinoma mRNA Expression Subtypes

www.a
llular proliferation functional theme, target genes of
F transcription factor, a known proliferation modu-
36), are overexpressed in this subtype as well as two
ers of the E2F family, E2F3 and E2F8. Other primi-
btype functional themes are RNA processing and
repair, which could be a consequence of the prolif-
n theme or an independent process.
classical subtype exhibits the distinctive functional
of xenobiotic metabolism, which detoxifies for-

hemicals. One study showed overexpression of this

on genes are displayed separately for viewability.
in smokers' versus nonsmokers' airway transcrip-
, including genes such as GPX2 and ALDH3A1

presse
squam

acrjournals.org
Furthermore, this subtype is enriched with a gene
ure derived from lung cell lines exposed to ciga-
smoke, including genes such as AKR1C3 (38).
stingly, the classical subtype has the greatest con-
tion of smokers and the heaviest smokers among
btypes. This theme, including genes such as GPX2,
C1, TXNRD1, and GSTM3, was noted as overex-
d in one head and neck SCC subtype (group 4
. 39), suggesting a possible relative to the lung
classical subtype. The classical subtype overex-
Independent validation of lung SCC expression subtypes. Heat maps depict mRNA expression of discovery cohorts (A), the validation cohort (B), a
lung centroid (C), and SCC cell lines (D). Microarrays are columns and are labeled with their class. Genes are rows and are ordered by a
s TP63, a transcription factor essential for stratified
ous epithelium development (40) that is more

Clin Cancer Res; 16(19) October 1, 2010 4869
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only overexpressed and amplified in lung SCC
ared with other histologic types (41). Cytoband
overexpression, a proxy for underlying genomic
amplification, suggests that 3q27-28, which con-
TP63, is amplified in the classical subtype. The mi-
ays of this study do not have enough resolution to
re TP63 isoform-specific expression, but this may
goal of future investigations.
une response is the major distinctive functional
of the secretory subtype and includes genes such
GDP dissociation inhibitor β (ARHGDIB) and tumor

is factor receptor 14 (TNFRSF14). Consistent with
eme, the secretory subtype has a NF-κB regulation

and NF-κB target gene overexpression. This sub- subtyp

site refers to gene sets having a predicted transcription factor binding site. Cell
. Drug targets are defined as overexpressed in all pairwise subtype comparison

ancer Res; 16(19) October 1, 2010
n (MUC1) and pulmonary surfactant proteins
C, SFTPB, and SFTPD; refs. 7, 42). Interestingly,
d transcription factor 1 (NKX2-1/TTF1), known to
ghly expressed in adenocarcinoma (43), is overex-
d in the secretory subtype relative to the other
subtypes. This commonality could be a result of
landular cell structure of adenocarcinoma, which
ps has secretory properties similar to the SCC se-
y subtype. A UNC normal lung centroid shows a
imilar expression pattern to the secretory subtype
he independent validation gene list, which was se-
without considering normal samples (Fig. 2C). To

ate any possible difference between the secretory

e samples and normal samples, an unsupervised
lso overexpresses the lung secretory cell markers clustering was completed using only these microarrays

ubtype biological functional themes. Significantly enriched gene sets that are overexpressed in a subtype (GSEA preranked, FDR < 0.05) and genes
ntative of the set are shown. Pathways and biological processes are organized into functional themes, indicated by italics. Transcription factor
ular component refers to gene sets having a particular cellular
s (FDR < 0.01).

Clinical Cancer Research
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lementary Fig. S6). Secretory and normal microar-
lustered with their group in essentially all cases,
sting that the secretory subtype and normal lung
stinct mRNA expression groups.
basal subtype expression profile shows a cell ad-
functional theme, including genes such as the la-

s (LAMB3 and LAMC2), collagens (COL11A1 and
7A1), integrins (ITGB4 and ITGB5), and claudin 1
1). Additionally, this subtype has an epidermal
pment theme, including keratin 5 (KRT5), psoriasin
A7), and gap junction protein β5 (GJB5). Several of
enes of the basal subtype, such as COL17A1,
2, and CDH3, are common with a head and neck
ubtype (group 1 in ref. 39) and a breast cancer
e (basal-like in ref. 9), suggesting that these differ-
gan site subtypes may share biological properties.
asal subtype overexpresses several S100 family
: S100A2, S100A3, S100A7, S100A8, S100A9,
12, and S100A14. S100A8 and S100A9 are highly
sed in the basal layer in psoriatic epidermal tissue
S100A2 is a marker specific for the basal layer of
ng epithelium and SCC (45). KRT5 is a basal layer
r in epithelial tissue (46). The basal subtype is en-
with genes whose products are localized in the
ent membrane.
arallel to differential biological functions are pat-
of mRNA expression with implications for pharma-
c intervention (Fig. 3). For example, TYMS, a target
tifolates including pemetrexed, is overexpressed in
rimitive subtype. The antifolate metabolism path-
differentially expressed among SCC subtypes, with
cretory subtype showing underexpression and sim-
to adenocarcinoma (Supplementary Fig. S7). Over-
ssion of TYMS has been shown to be related to
trexed resistance in a dose-dependent manner in
ancer cell culture (47). In addition, PARP1, a target
eral drugs in development, is overexpressed in the
tive subtype.

ubtype tumor morphologic and patient
cteristics
morphologic and patient characteristics of the sub-
are displayed in Table 1. Grade is significantly asso-
with subtype (P = 0.024, Fisher's exact test). The

tive subtype has an overrepresentation of poorly dif-
iated tumors, and the basal subtype has an overrep-
ation of well-differentiated tumors. Tumor stage is
ppreciably different among subtypes, although we
that the classical and secretory subtypes have in-
d proportions of stage III tumors. The surgical co-
oversample early stages, and possibly, greater
ing of late-stage patients may find additional sub-
tage associations. Specimen quality metrics of per-
umor, percent necrosis, and percent lymphocyte
ation are not appreciably different among the sub-
arguing against sampling artifacts as the source of

btypes. Two cases of WHO morphologic SCC sub-
ere definitively called by pathologist review (one

To
rived

acrjournals.org
id in primitive and classical subtypes), suggesting
ese SCC morphologic subclasses are rare.

ient sex approaches statistically significant associa-
ith subtype (P = 0.058, Fisher's exact test). Females
errepresented in the primitive subtype and males in
assical subtype. Consistent with the smoking expres-
rofile of the classical subtype, the classical subtype
e greatest mean pack-years (73; P = 0.319, Kruskal-
s test) and the lowest proportion of nonsmokers
P = 0.214, Fisher's exact test), although these obser-
s do not meet statistical significance.

ubtypes have different patient survival outcomes
rall survival (OS) and RFS outcomes are significant-
ferent among SCC subtypes (Fig. 4). The primitive
e has worse OS and RFS compared with the other
es in all stages and in stage I (Fig. 4), whereas the
secretory, and classical seem to have similar out-
. Considering the UNC cohort alone, the primitive
pe outcome is also worse compared with the other
pes over all stages (OS: P = 0.066, log-rank test;
= 0.004, log-rank test) and stage I (OS: P = 0.057,

nk test; RFS: P = 0.007, log-rank test). In the UNC
t, 7 of 18 recurrences were extrapulmonary and
sal subtype had the lowest number and proportion
To evaluate the independent contribution of SCC

pe to patient risk in light of known prognostic fac-
nivariate and multivariate Cox proportional hazard
ls were constructed (Supplementary Table S2). Signif-
univariate predictors were primitive subtype for OS
FS and tumor stage for OS. Patient age and tumor
were not significant predictors of either outcome. In
ple variable models, only subtype retained signifi-
for OS and RFS. The nonsignificant prediction of
mor stage may be due to the underrepresentation of
age patients across the cohorts.
oni et al. reported two SCC mRNA expression sub-
with a survival difference and provided a list of dif-
ially expressed genes, where high expression of the
rity of the genes were downregulated in the high-risk
” (13). Comparison of Raponi et al.'s microarrays by
gene list and the subtypes discovered in this study
two clear subtype groups: underexpression (primitive
cretory) and overexpression (basal and classical; Sup-
ntary Fig. S8). Therefore, the four subtypes discovered
study map to prior results and this study has divided
f the prior subtypes into two new ones and improves
C mRNA expression subtype granularity. Interesting-
Raponi et al. poor survival subtype totals 43% of their
ts, where the poor survival subtype of this study
itive) is 16% of their patients. It seems that a fraction
oni et al.'s high-risk subtype shows poor survival out-
relative to the remainder of SCC.

ubtypes are similar to different normal lung cell
and SCC cell lines

evaluate the hypothesis that SCC subtypes are de-
from different cell types present in the normal lung,

Clin Cancer Res; 16(19) October 1, 2010 4871
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ubtypes were compared by mRNA expression to
published model systems. The first model, “Mouse
evelopment,” is a time series of mouse lungs ex-

d from embryonic stages to adult (21). Expression
rity is defined as high positive Pearson correlation
en an SCC subtype and time points within the mod-
e primitive subtype shows expression similarity to
stage mouse lung, and the secretory subtype shows
rity to late-stage mouse lung (Fig. 5A). The second
l, “Human bronchial epithelial cell air liquid inter-
ulture” (HBEC-ALIC), is a time series of cultured
al, healthy, human bronchial epithelial cells, in
the early time points consist of stratified basal cells
ter time points include secretory and ciliated cells
The basal subtype showed expression similarity to
rly time points during which basal cells are predom-
(Fig. 5B). The primitive and secretory subtypes
expression similarity to the later time points at
there are secretory and ciliated cells. The third

l system, “Human microdissected lung cell compart-
” (HMLCC), was laser capture microdissected cells
ned in surface epithelium and in submucosal glands
rmal healthy lung (20). The secretory subtype over-
sses genes that are overexpressed in submucosal

s (Fig. 5C). The basal subtype overexpresses genes
re overexpressed in surface epithelia. The classical

The
that lu

ancer Res; 16(19) October 1, 2010
e does not show appreciable similarity to any spe-
ng model, is the only subtype to have this property,
ould be most similar to multiple or unobserved cell
. Therefore, by the combination of all three lung
ls, three of the four SCC subtypes have unique
rities to different, normal lung cell types.
ddition to the cell type models, SCC subtypes may
pond to different SCC cell lines, which could estab-
ditional manipulatable models for future investiga-
into subtype biology. To ascertain if SCC cell lines
pond to different SCC tumor subtypes by mRNA ex-
on, four published SCC cell line microarrays (23)
given subtype classifications by the nearest-centroid
tor. Interestingly, the four cell lines were predicted
different subtypes (Fig. 2D). Expression of the sub-
between the cell lines and tumors is consistent over
lidation gene set (Fig. 2A and D). For example, genes
nsistent and mutually exclusive in the cell lines as
ted (HCC15, primitive and MCM10; HCC95, classi-
d AKR1C3; HCC2450, secretory and MUC1; H157,
and MMP13).

ssion
Fig
sub
by
the
The
tha
due
et a
and
Roe
P v
eva
sur
principal novel hypothesis t
ng SCC expression subtypes e

Clini
Survival outcomes of SCC
es. Survival was estimated
Kaplan-Meier method using
ilable data of all cohorts.
mple sizes (n) are different
e overall study sample size
data availability (OS: Bild
aponi et al., Roepman et al.,
C cohorts; RFS: Lee et al.,
an et al., and UNC cohorts).
s are from log-rank tests
ing the independence of
ested in this study is
xist, are reproducible,
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www.a
inically relevant, and exhibit patterns that correlate
nique cell types in the normal lung. These subtypes
itive, basal, secretory, and classical) were identified
unbiased and objective manner and are supported
ss-cohort validation using five training cohorts and
ependent validation using a sixth cohort, which to-
total 438 patients. The expression subtypes were al-
nd in a wide variety of patient populations from the
d States, Asia, and Europe, in a wide variety of cohort
rom 36 to 127. All cohorts showed approximately
me subtype proportions (overall: primitive, 16%;
al, 37%; secretory, 26%; basal, 21%). These sub-
were associated with tumor differentiation and pa-
sex. Survival outcomes are significantly different
g the subtypes, and subtype is an independent pre-
of survival. Possible limitations of our analysis in-
possible sample quality artifacts or patient behavior,
s smoking immediately before surgery; however, all
horts showed the same results, so any limitation
have to occur in six large, independently collected

ts.
SCC expression subtypes are biologically distinct
ow similarities to distinct normal lung cell popula-
These biological characteristics serve as the basis for
C nomenclature. The basal subtype exhibits many

cteristics of lung basal cells, such as cell adhesion
pidermal development functional themes, S100A2
RT5 basal cell markers, overexpression of genes
products are localized in the basement membrane,

rity to basal cells in the HBEC-ALIC model, and sim- dram

” refers to embryonic day and “p” refers to postnatal day. C, the model HMLCC (20
ressed in submucosal glands and in surface epithelium as rows and subtype ce

acrjournals.org
btype has many features of lung secretory cells, such
factant and mucin overexpression, similarity to secre-
ells in the HBEC-ALIC model, and similarity to sub-
sal glands in the HMLCC model. The primitive
e has a cellular proliferation functional theme, the
survival outcome, an overabundance of female pa-
, the most nonsmokers, and an overabundance of
y differentiated tumors. This subtype is similar to
embryonic mouse lungs, where primitive, less differ-
ed cells may be predominant and would be consis-
ith the poorly differentiated nature of these tumors.
rimitive subtype also has similarity to late-stage
-ALIC, which could be explained by lung “transient
sion” in which differentiation markers are expressed
g early lung formation and again in the developed
(48). Alternatively, a late-emerging and late-active
pe in HBEC-ALIC may be most similar to the em-
ic mouse lung. The classical subtype exhibits fea-
representative of typical lung SCC, including the
st prevalence at 37%, overabundance of males,
st patient smoking behavior, overexpression of
and putative amplification of the TP63-containing
3q27-28.
distinct SCC subtype to cell population similari-
uld be explained by the SCC subtypes having dif-
ancestor cells. These different ancestor cells could
ll types of distinct lineages or cellular differentia-
tages such as proposed in breast cancer (49). This
io provides a reason why the SCC subtypes have

atically different mRNA expression. The subtypes
to surface epithelia in the HMLCC model. The secre- could arise by genetic mutation from different ancestors

SCC subtypes compared with lung cell type models. The relationship of relative SCC subtype expression differences to relative expression
ces of published lung model systems. A and B, the models Mouse lung development (21) and HBEC-ALIC (22) are microarray time series, where
indicated on the horizontal axis. Points mark Pearson correlation coefficients of SCC subtype centroids to model time points using the top
enes having the greatest Pearson correlation coefficient with time. Bars represent 95% confidence intervals. Lines connect points corresponding
ame subtype. Large positive correlations indicate mRNA expression similarity, whereas large negative correlations indicate dissimilarity.
) is compared with SCC subtypes via a heat map of genes that are
ntroids in columns.
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ave different mRNA expression, and this ancestral
expression could persist in progeny tumor cells.

utative subtype ancestral cell information could be
in developing SCC subtype pharmacologic inter-
ns that exploit differences in the ancestral cell
A caveat to our interpretation of SCC subtype to
opulation similarity is that the similarity could be
by coincidence and expression similarities could
similar biology and not similar origin. The lung
ultiple proposed cellular development pathways,
uture studies that describe the molecular profiles
lung cell types or lung cancer stem cells would

r clarify the putative ancestral cells of the SCC
es (50).
SCC subtypes may have applications in patient
nd in cancer research. For instance, patients with
imitive subtype could be treated more aggressive-
ause of the poor survival expectation of this sub-
r could be given a more accurate prognosis than
ing traditional prognostic factors alone. Basic
r research could be conducted using the subtype
bed in this study. The

ting prognosis of squamous cell and adenocarcinomas of the
g. Cancer Res 2006;66:7466–72.
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d possibly serve as a foundation for clinical trial
ion.
conclusion, we identified four robust expression
es of lung SCC using a multicohort discovery and
tion strategy. The subtypes are clinically and pheno-
lly different, suggesting different therapies.
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Supplementary material for:  
Wilkerson, M.D. et al. (2010) Lung squamous cell carcinoma mRNA expression 
subtypes are reproducible, clinically-important and correspond to different normal 
cell types. 
 
Acquisition, quality control, and processing of published lung SCC microarrays 
Clinical and microarray data were downloaded from websites for the Bild et al, Expo, 
Raponi et al, and Roepman et al discovery cohorts (Supplemental Table 1).  Arrays were 
unbiasedly reviewed for possible technical artifacts suggestive of probe hybridization 
irregularities using spatial intensity, overall intensity, relative log expression, normalized 
unscaled errors, mRNA degradation and overall intensity plots.  Arrays showing evidence 
of possible technical artifacts were removed from further analysis.  Discovery cohorts 
were reduced to those with an SCC diagnosis.  The following SCC microarrays were 
removed: Bild et al - 0176_6612_h133+_97-403.cel; Expo - GSM231874; Raponi et al – 
GSM102217, GSM102215.  The removed Raponi et al microarrays were noted in the 
original publication as having reduced quality.  All microarray platform probes were 
mapped to a common gene database to create gene expression values.  A database of 
curated mRNA transcripts corresponding to human genome build 36.1 and GenBank 
release 161 was downloaded1 (1).  Separately for the Affymetrix U133 Plus 2.0, 
Affymetrix U133A and UNC custom Agilent 44,000 platforms, probes were aligned to 
transcripts by BLAT (2) and probes with completely identical, same strand, no-gap 
alignments to exactly one gene were retained.  Raponi et al array transcripts were aligned 
to this database and transcripts with 90% identical, no-gap alignments to exactly one gene 
were retained.  Roepman et al Unigene identifiers were mapped to gene symbols.  For 
cohorts with Affymetrix CEL files, expression values were calculated using the Robust 
Multiarray Average (3) and the custom mapping.  Otherwise, probes or transcripts 
matching the same gene were averaged.  Raponi et al expression values were log2 
transformed to be on the same scale as the other cohorts.  Final platform and cohort gene 
counts are listed in Supplementary Table 1.  Cohort clinical variable levels were mapped 
to common scales where needed including grades moderate-poor and moderate-well 
mapped to moderate and age range mapped to the range mean. 
 
Ross et al microarrays were processed into gene expression values by Robust Multi-
Array Average (3) and the custom gene mapping.  Ross et al microarrays were reduced to 
the common time points among the three patients.  Patient median gene expression was 
calculated for each time point.  Mariani et al mouse microarrays were processed by 
Robust Multi-Array Average (3).  Human-mouse homologous genes were downloaded 
from NBCI Homologene2.  Mariani et al genes were mapped to human homologs and 
genes not in a one-to-one relationship were removed. All SCC cell lines from Zhou et al 
microarrays were processed into gene expression values by Robust Multi-Array Average 
(3) and the custom gene mapping.  Ross et al, Mariani et al, and Zhou et al data were 
gene median centered.  Final gene counts are in Supplementary Table 1. 
 
Unsupervised subtype discovery and multi-cohort classification adjustment. 
                                                 
1 ftp://ftp1.nci.nih.gov/tcga/other/integration/db/SpliceMiner_9606TranscriptDB_36.1.zip 
2 ftp://ftp.ncbi.nih.gov/pub/HomoloGene/; version Feb. 14, 2008 
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Consensus Clustering provides quantitative stability evidence for judging the number of 
clusters in a microarray dataset (4).  This stability evidence, termed consensus, is the 
proportion that two microarrays are clustered together over a large number of microarray 
subsamplings.  All discovery cohorts’ consensus empirical cumulative distributions have 
modes near 0 and 1 (Supplemental Fig 3B) indicating that tumors have high consensus to 
some tumors and low consensus to others which is evidence for clusters (4).  Consensus 
proportional increases approached a minimum at four clusters in all cohorts, which shows 
that additional clusters are similar to random divisions (Supplemental Fig. 3B, C).  
Consensus matrices demonstrate high intra-cluster consensus and low inter-cluster 
consensus at four clusters, confirming four as a stable cluster number (Supplemental Fig. 
3A).  All cohorts’ cluster tracking plots demonstrated that each of four clusters comprised 
> 10% of samples in a cohort and that additional clusters were small (Supplemental Fig. 
3D). The Expo dataset had an equivalently sized 5th cluster.  A likely cause for this 
additional Expo cohort cluster is that this cohort is the smallest and the paucity of 
samples complicates detection of exactly 4 clusters as in the other cohorts.  By sum of 
this evidence, four clusters were selected as a common, empirically-supported number of 
expression clusters in all discovery cohorts. 
 
In order to derive the optimal sample classification given all of the data rather than data 
from its source cohort, a multi-cohort classification step was completed.  Multi-cohort 
centroids were built by taking the median of each centroid group (A, B, C, D in 
Supplemental Fig 4).  Then, all arrays were classified by taking the maximum Pearson 
correlation to these multi-cohort centroids.  After this adjustment, group D was found in 
the Lee et al dataset.  We note that group D was also found in Lee et al at a higher 
consensus cluster count (data not shown).  An average of 15% of a cohort’s arrays 
changed classification; thus, a minority of arrays had their classification modified. 
 
The Raponi et al cohort contained one patient assayed by two microarrays.  Both arrays 
were the same subtype and we retained one patient record for clinical analysis.
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Supplement Table 1:  Data source, probe annotation and array counts.  
 Lung SCC Patient Cohorts     Model Datasets   
 UNC Bild et al. 1 Expo 2 Lee et al. 3 Raponi et al. 4 Roepman et al. 5 Ross et al 6 Mariani et al 7 Zhou et al 8 
Institution University of 

North Carolina 
Duke University International 

Genomics 
Consortium 

Sungkyunkwan 
University 

University of 
Michigan 

European 
Microarray 
Consortium 

   

Microarray platform Agilent 44K 
custom 

Affymetrix 
U133 Plus 2.0 

Affymetrix 
U133 Plus 2.0 

Affymetrix 
U133 Plus 2.0 

Affymetrix 
U133A 

Agilent 44K whole 
genome 

Affymetrix U133 
Plus 2.0 

Affymetrix 
Mu11K subA 
and subB 

Affymetrix 
U133A 

Expression level probe probe probe probe gene probe probe probe probe 

Expression format sample / 
common 
reference 

Affymetrix CEL 
files 

Affymetrix CEL 
files 

Affymetrix CEL 
files 

MAS5 Log2 ratio 
(sample/common 
reference) 

Affymetrix CEL 
files 

Affymetrix CEL 
files 

Affymetrix CEL 
files 

Published 
annotation 

probe 
sequences 

probe 
sequences 

probe 
sequences 

probe 
sequences 

Affymetrix 
Transcript 

Unigene and other probe 
sequences 

probe 
sequences 

probe 
sequences 

Lung squamous cell 
carcinoma array 
count 

56 53 37 75 130 92 - - 4 

Array count with 
acceptable quality 
control 

- 52 36 75 128 92 30 11 4 

Probes/Transcripts 
on array 

39,980 604,258 604,258 604,258 22,283 44,290 604,258 8,828 247,965 

Probes on array 
mapping to exactly 
one gene 

31,035 318,205 318,205 318,205 - - 318,205 - 
 

195,448 

Transcripts mapping 
to exactly one gene 

- - - - 17,320 29,734 - 6,286 9  

Final Gene count 17,109 17,537 17,537 17,537 11,865 15,263 17,537 6,286 12,301 
Genes in common 
across cohorts 

9,515         

Genes meeting 
reliability condition 
across cohorts 

9,229         

1. http://data.genome.duke.edu/oncogene.php and (5) 
2. ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE2109/GSE2109%5FRAW%2Etar 
3. (6) 
4. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4573 and (7) 
5. http://research.agendia.com/ and (8) 
6. (9) 
7. (10) 
8. (11) 
9. Human ortholog gene counts. 
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 Overall survival Relapse-free survival 
  Hazard ratio (95% CI) Hazard ratio (95% CI) 
univariate      
Primitive subtype  vs. others 1.83 (1.18-2.86)* 2.40 (1.49-3.86)* 
Stage 1.24 (1.10-1.40)* 1.15 (0.98-1.36) 
Grade 1.12 (0.65-1.94) 1.73 (0.97-3.10) 
Age ≥ 70 0.93 (0.64-1.37) 1.03 (0.63-1.69) 
multivariate      
Primitive subtype vs others 1.95 (1.11-3.43)* 2.03 (1.08-3.80)* 
Stage 1.17 (0.99-1.37) 1.13 (0.92-1.38) 
Grade 0.98 (0.56-1.72) 1.43 (0.77-2.65) 
Age ≥ 70 0.84 (0.51-1.41) 1.14 (0.60-2.17) 

 
Supplement Table 2: Cox proportional hazards models. Cox proportional hazards 
models used all available data, have tumor stage coded as a number 1-7 for stage IA 
through IV, grade coded as poorly differentiated or other, and age coded as greater than 
or equal to the median patient age, 70  (* P < 0.05). 
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Figure Legends. 
 
 
Supplement Figure 1: Subtype exemplar H&E images. 
Pathologist-reviewed exemplars of each subtype (A – primitive, B- classical, C – 
secretory, D – basal) are displayed.  The scale in A also applies to B-D. 
 
Supplement Figure 2:  SCC subtype discovery and validation procedure. 
 
Supplement Figure 3:  Consensus clustering of discovery cohorts. 
Consensus clustering results from the discovery cohorts are shown as rows.  Consensus 
matrices are symmetrical and represent consensus values at a particular cluster count (k) 
between two microarrays (A).  Consensus is the proportion that two microarrays occur in 
the same cluster out of number of subsample iterations.  Consensus is shown according to 
the color range of dark blue for a consensus value of 1 and white for a consensus value of 
0.  The clusters are indicated by the colored rectangles atop the matrix according to the 
color legend within each cohort (A).  Empirical cumulative consensus distributions are 
shown for different k (B).  Consensus proportional increase plots show the change in area 
under the curve in (B) in comparing k relative to k-1 (C).  Item tracking plots show the 
cluster assignment of microarrays in columns over different k clusterings, colors indicate 
the same cluster (D).  The consensus matrices’ clusters colors correspond to the cluster 
tracking plot colors.  For further details, refer to the Consensus Clustering publication (4). 
 
Supplement Figure 4: Correlation matrix and clustering of unsupervised centroids 
from discovery cohorts.   
Cells are labeled by discovery cohort and centroid where the centroid number is taken 
from unsupervised clustering (Supplement Fig. 3).  Cells in the matrix represent the 1 – 
Pearson correlation coefficient between two discovery cohort centroids by a degree of 
shading according to the scale above (B).   For example, Roepman4 and Bild2 have 
highly similar expression profiles, have a large Pearson correlation coefficient, a small 1 
– Pearson correlation coefficent value and is shaded darkly.  The matrix is ordered by 
columns and rows by the dendrogram at the top of the matrix (A).  The dendrogram is the 
result of an agglomerative, average linkage, hierarchical clustering using the correlation 
matrix. Four centroid groups are marked (C).  All cohorts have one member in each 
centroid group with one exception: Lee et al. does not have a centroid in group D.  Lee et 
al. has an extra centroid, Lee3, clustered with group B that is less similar to the group 
than Lee4, and so Lee3 excluded from this centroid group (*).  Expo5 represents a small 
cluster of 3 microarrays (**). Because Expo5 is clustered with group C and Expo3 is 
more similar to the group, Expo5 is not included in centroid group D. 
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Supplement Figure 5:  Protein expression by immunohistochemistry.  Protein 
expression was evaluated by pathologist review of immunohistochemical staining 
intensity of tumor cells via a tissue microarray.  Scores are the proportion of tumor cells 
(0-100) multiplied by their immunohistochemical stain intensity (0-3).  Scores were 
standardized prior to agglomerative average-linkage hierarchical clustering and are 
displayed as a heatmap in which columns are tumor samples (A), and rows are genes 
targeted by antibodies shown in parentheses.  One exemplar per subtype is displayed in 
rows and immunohistochemical stains in columns (B). 
 
Supplement Figure 6: Unsupervised clustering of squamous secretory subtype and 
normal microarrays.  The top 1,000 variable genes, measured by median absolute 
deviation, were used for unsupervised clustering (A) and heatmap display (B).  The 
clustering was agglomerative, average linkage, hierarchical clustering using 1-Pearson 
correlation coefficient as distance.  Microarrays were gene-median centered prior to 
clustering.  Secretory subtype and normal microarrays are marked by the colored 
rectangles (C) according to the legend.  Representative genes are shown (D). 
 
Supplement Figure 7: Comparison of methotrexate (antifolate) drug metabolism  
pathway among lung squamous subtypes. Pathway is derived from PharmGKB 
Methotrexate drug metabolism pathway3.  SCC subtype centroid gene expression is 
represented by the color scale.  An adenocarcinoma centroid is presented for comparison.  
The adenocarcinoma centroid has the squamous gene medians subtracted, so that it is on 
the same scale as the squamous subtype centroids.  Expression data is from UNC cohort 
and unpublished local adenocarcinoma samples. 
 
Supplement Figure 8: Comparison to previously published subtypes.  A heatmap 
shows expression of the Raponi et al subtype genes, as rows, for the Raponi et al 
microarrays, as columns.  Microarrays are grouped and labeled by the subtypes defined in 
this study, indicated by the colored rectangles. 

                                                 
3 http://www.pharmgkb.org/do/serve?objId=PA2039 
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