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The multistage model, introduced by Armitage and Doll, was very successful at describing many
features of cancer development. Doll and Peto noted a significant departure below the prediction of
the model and suggested that this could be due to undercounting of cases at older ages, or to the
‘biology of extreme old age.” Moolgavkar pointed out that it could also be due to the approximation
used. The recent observation that cancer incidence falls rapidly above age 80 has stimulated new
modelling investigations, such as the Pompei—Wilson beta model (which does reproduce the rapid
fall). In the present paper, we argue that Moolgavkar’s criticisms, while mathematically correct, do
not affect the conclusions, particularly the constancy of the number of stages across different cancer
registries (Cook, Doll and Fellingham. 1969: A mathematical model for the age distribution of
cancer in man. International Journal of Cancer 4, 93—112). We discuss several exact solutions,
compare them with the most recent data, and prove rigorously that the standard Armitage—Doll
multistage model can never reproduce the sharp turnaround in cancer incidence at old age seen in the
data. We discuss in detail multistage processes which have a property observed in many laboratory
studies, namely that some stages progress much faster than the others. We verify mathematically the
intuition that sufficiently fast stages do not appreciably affect the incidence rate of cancer, and
discuss implications of this fact for cancer treatment strategies. We also show that the simplest
possible modification of the Armitage—Doll model to incorporate cellular senescence just leads to
the Pompei—Wilson beta model. Toxicology and Industrial Health 2003; 19: 125-145.

Key words: beta model; cancer incidence; carcinogenesis; cellular senescence; multistage model; old

age

Introduction

The idea that cancer proceeds by a number of stages
was developed by Armitage and Doll (1954) soon
after cancer registries became available in many
countries. They noted that cancer incidence was not
very reliable whereas mortality is much more
objective. Therefore they plotted cancer mortality

Address all correspondence to: Gordon Ritter, Harvard University
Department of Physics, 17 Oxford Street, Cambridge, MA 02138, USA
E-mail: ritter@fas.harvard.edu

© Arnold 2003

against age rather than incidence. However, even
mortality was not often well described above age
70, since many death certificates had the nebulous
entry ‘old age’. They therefore only used the
multistage model to describe cancer mortality up
to age 70. Cancer incidence I(¢) is defined by
epidemiologists as the rate of diagnosing new cases
divided by the number of persons at risk. Similarly
normalized cancer mortality is the rate of cancer
deaths divided by the number of persons at risk.
Armitage and Doll found that cancer mortality
fitted a function:
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where k was interpreted as the number of stages in
the progression of cancer, and a is proportional to
the product of the probabilities at each stage. This
model successfully described several important
known features of cancer.

1. There is usually a latency period between the
insult which appears to cause the cancer and the
expression of the cancer.

2. If cancer-causing agents act at different stages of
the cancer progression, and are present at high
doses, then a multiplicative synergy is predicted
as seen, for example, between smoking and
asbestos exposure.

3. Cook et al. (1969) found that while k varied for
different tumor sites, it is constant between
countries. The constant a varied between coun-
tries, as might be expected from the different
environmental situations.

These successes led to widespread use of the
model. It was soon noted that above age 60, the
age-specific mortality rate flattened and fell below
the curve predicted by Armitage and Doll. Two
major reasons for such a flattening have been
suggested; the first is a variation in susceptibility
(variation in a) between different members of the
same group being considered, and the second is a
failure of the mathematical approximations used by
Doll and Armitage.

Cook, Doll and Fellingham considered varia-
tions of susceptibility in the population. They
plotted incidence versus age on a logarithmic
scale, for varying fractions C of sensitive persons
(Cook et al., 2004, Figure 4, reproduced here as
Figure 1). They concluded that if only 1% of the
population is susceptible to cancer, then at older
ages the normalized incidence curves must fall
when all the 1% have developed cancer.

Even if the number of susceptibles is 10% then a
flattening occurs. Figure 1, reproduced from Cook
et al. (1969), indicates that by suitable choice of the
parameter C, one might be able to describe a rapid
fall off in incidence, a suggestion we discuss later.
Cook, Doll and Fellingham ultimately rejected this
possibility because data showed a constant age
for the peak of cancer incidence, while their
particular assumption of insensitive individuals
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Figure 1. Cook, Doll and Fellingham (1969) considered variable
susceptibility in the population. This plot shows incidence versus age
on a logarithmic scale, for varying fractions C of sensitive persons.
Modified from Cook et al. (1969), Figure 4.

indicates that incidence peaks at a younger age
for rarer cancers.

The variations in cure rates for cancer in the last
50 years suggest that it is now more important to
discuss incidence rather than mortality, and in
addition, that incidence may now be much better
determined than 50 years ago. In this paper, there-
fore, we reopen the discussion with an emphasis on
cancer incidence rather than mortality.

Let f(¢) denote the event rate for the k" change
at time ¢, in a single cell. According to our
definition, cancer incidence is related to f(z) by
1(t)=Nf(t), where N is the number of affected cells.
The theoretical model calculates f(z); we will per-
form this calculation exactly for a variety of
interesting situations.

In the case of the Armitage—Doll model,
Iap(t)=h(t) is an infinitely growing hazard func-
tion, and satisfies the criterion that the cumulative
probability of cancer, given by



F(t)=1—exp (— J Zh(r)dr) , )
0

approaches 1 in the limit as # — oo. According to
the definition of the hazard function, we consider
the differential equation

F'(1)

1 —F(t) )

Iyt =at"" =

Solving this equation with the initial condition
F(0)=¢ yields

ik
F()=1+(c— 1)exp<:’> .

The condition ¢#0 corresponds to fetal cancer,
which, while a real condition, is ignored in this
paper. Hence we are concerned with the limit ¢—0,

F() = 1 —exp(—at* k) 4)

This satisfies lim,, , F(z) = 1, which describes the
fact that, according to this model, everyone will
develop cancer if they do not die of something else.
It is obvious from these considerations that
the Armitage—Doll approximation (Equation (1))
increases without bound, and given sufficient
time, any susceptible cell eventually becomes ma-
lignant.

As noted above, the Armitage—Doll model
(Equation (1)) must be viewed as an approximation.
The correct equations were written down by
Moolgavkar (1991) and Armitage (1985), and it
was seen that (Equation (1)) is only valid for small
values of 7. It was seen also that (Equation (1))
overestimates incidence. Moolgavkar (1991) has
published a simple example supporting the idea
that Armitage—Doll approximation can be inade-
quate if the transition rates for cancer stages are not
small enough. His example presupposes a smaller
number of cells N =10 in the tissue of concern than
is usually taken. In contrast to the Armitage—Doll
approximation, the hazard function in the exact
model has a finite asymptote lim, A1) = Ny,
where i, 1S the minimal transition rate. The
suggestion that the failure of the Armitage—Doll
approximation may be responsible for the observed
flattening of incidence for ages above 60 follows
from this.
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Pompei and Wilson (2001) reopened the issue.
They noted that since 1955, data on cancer
incidence has improved and data on both incidence
and mortality above age 70 has improved. For
discussions of cancer development, incidence may
now be more reliable (for many tumor sites) than
mortality, due to improvements in cancer treat-
ment. Making the assumption that the data, and
particularly the SEER data in the United States, are
reliable, Pompei and Wilson plotted the normalized
cancer incidence data against age, finding a rapid
drop in normalized incidence above age 80, which is
not explained by simple parameter adjustments
of the Armitage—Doll model. This is illustrated
in Figure 2 for a common cancer (colon), an
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Figure 2. SEER data from Pompei et al. (2004) and SEER (2002)
shown together with the best possible fit of the Armitage—Doll model.
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intermediate-incidence cancer (non-Hodgkins lym-
phoma), and a rare cancer (brain).

Pompei and Wilson added an extra term to
Equation (1), leading to a beta function I=
ar*~'(1—pt) which fits the data for most cancers
remarkably well, and speculated on possible biolo-
gical explanations for the extra term. Pompei,
Polkanov and Wilson (Pompei ez al., 2001) exam-
ined the limited data on laboratory mice that have
been followed for their natural life of 1000 days or
more rather than being sacrificed at 750 days. The
age of cancer incidence is not well determined for
mice, but cancer mortality suffers neither from
complications of improved treatment nor from
misreporting. In the absence of these systematic
errors, it was observed that the cancer mortality fell
to zero before the end of life. This is shown in
Figure 3.

In the present paper we re-examine the criticisms
of Moolgavkar, and improve upon the speculations
of Pompei and Wilson. This is done by
exact calculations in the multistage model. In the
process we derive several closed-form solutions
to the model. Following previous studies (Pompei
and Wilson, 2001), we continue to make the
assumption that the SEER data in the United
States is reliable above age 80. We prove that under
this model, as one would expect, the probability
that a single cell becomes cancerous given infinite
time is 1.

Crucial parameters for the multistage model are
the transition rates, which we denote u;. We give an
exact solution for a model with a number 7, of slow
stages with rate x4, and one fast stage with rate uy,
and show that if s>, the fast stage only slightly
perturbs the final solution and may be neglected.
We show that, if the multistage model is assumed to
calculate the probability of cancer for a single cell,
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Figure 3. Mice data from Pompei ez al. (2001) shown together with
the best possible fit of the Armitage—Doll model.

then this model can only be consistent with the
rapid fall-off observed in the data if some unusual
biological assumptions are made.

Methods

Assumptions of the multistage model

In this section we repeat, starting with the funda-
mental assumptions, the derivation of the exact
multistage model, and suggest various extensions
thereof.

In the Armitage—Doll approximation, cancer
incidence has a simple power law growth. This is
an approximation to the exact multistage model
(Moolgavkar, 1978; Moolgavkar et al., 1999; Pom-
pei and Wilson, 2001) described by the Bateman
equations (Bateman, 1910). The multistage model
makes several basic assumptions:

1. Malignant tumors arise from a series of mod-
ifications of a single progenitor cell.

2. The process of developing a malignancy is
equally likely for all cells in the same tissue.

3. The process of developing a malignancy in one
cell is independent of the process in any other
cell.

4. After a malignancy has developed in a cell,
proliferation to an overt cancer is rapid and
involves many cells in the same tissue, and may
even involve metastasis to another tissue.

Under these assumptions, cancer is the last of a
series of k& sudden and irreversible changes which
must take place in a specific order. For a cell which
has experienced (i—1) changes, the event rate for
the next change is x;. We choose the convention
that a single transition from a state pg to a state py,

Po > Py (5)

corresponds to one ‘stage’, and has k=1. This
implies that the number of transition rate constants
Uy, ..., 1 always equals the number of stages.

Cancer in a cell

Cancer is the last of a series of k sudden and
irreversible changes which must take place in a cell
in a specific order. As is standard for Poisson



random processes, we neglect the probability of two
or more events taking place in (¢, t+dt) as dt — 0.
This means that if a cell is in state p; at time ¢, the
probability of transformation to state p;,; in a
small time interval Az is given by At + o(A1),
where o(Ar) is very small compared to At, and
o(A)/At — 0 as At — 0. Also, the probability of
transformation i — i+; with j>1 in time Af is
assumed to be o(A¢). This implies that 1/, , is the
average time required for the cell to go from state i
to state i+1.

The probability to find a cell in the /" stage by
the end of time interval (¢, 7+dt) is then given by

p,(l + dt) == (1 - ﬂl+1dt)pl(l) + ﬂi+ldl'0
Fdt-p; (1) (6)

Taking the limit df — 0, Equation (6) becomes
Po() = ppy(0)
PO = —p; pAD + pp; (1) D
PO = wyp (0.

The first and the last equations in this system are
different because there are no stages before the
stage i=0 (normal cell), and no stages after the k'
stage, which corresponds to cancer. The system
(Equation (7)) should be completed with appro-
priate initial conditions:

o =1, p(O=0 (=12,...,k €]
which mean that the cell was normal at time 7=0.
The last equation in Equation (7) also gives the
probability to find the cell at its last cancerous
stage. Following Armitage and Doll, we reserve the
notation f{(¢) for this quantity:

S =p () = wpp_ (1) 9

Thus f(¢) denotes the event rate for the k™
change (corresponding to cancer) at time 7 in a
single cell.

Cancer in a tissue and in humans

The event rate f(¢) is a probability distribution
function (PDF) for appearance of cancerous cells,
which means that ch f()dt' = 1, which means that
given enough time, each cell will become cancerous.
Even though the PDF is convenient for mathema-
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tical modelling, it is not directly observable. Only
developed cancer in a tissue, rather than a single
cancer cell, could be recognized as a cause of death,
or even diagnosed at all. In practical studies cancer
incidence is commonly observed. Following the
notation of Armitage and Doll, cancer incidence
I(t) (which is the same quantity as the hazard
function used in biostatistics and denoted there as
h(t)) is defined by epidemiologists as the rate of
diagnosing new cases, divided by the number of
persons at risk.

Let us define a cumulative distribution function
(CDF) for cancer per cell as F(z) = jf) f(@)drt', that is
the probability for a cell to become a cancer by
moment ¢. Then the probability of at least one
cancer cell in a tissue of N cells by the moment ¢ is
G(t)=1—[1—F(t)]". This definition assumes the
independence of cells. Cancer incidence can be
defined in terms of G(¢) as

I1(t) = G'(1)/(1 — G(1) = NF'(1)/(1 — F(2))

Cancer is a rare event even on the tissue level
and therefore F(7) <1, and hence the approxi-
mation

I(t) ~ Nf (1) (10)

is quite good since the number of cells in a tissue, N,
is greater than 10°. Equation (10) allows fitting of
the theoretically derived cancer event rate per cell
f(t) and the observed incidence of cases in popula-
tion I(¢). This result was derived by Armitage and
by Moolgavkar.

In the above, the function 7(z) ~ Nf(¢) is inci-
dence of cancer in a tissue, or equivalently, in a
person. When multiplied by the size of a popula-
tion, this becomes the true number of cancers in
that population at risk, or the incidence. However,
the number of cells N may not be large enough to
ensure that the Armitage—Doll approximation is
accurate, so it is important to discuss this para-
meter. There are about 10'* cells in a human body,
and in any given tissue, they would be proportional
to weight. Thus, as an order of magnitude approx-
imation, the colon has roughly 10'? cells. The
postulate that only cells on the surface are im-
portant may reduce this to 10'!. Therefore in what
follows we take the number used by Moolgavkar
(10° cells) as a lower limit.
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The Bateman equations

The exact solution to the multistage model can be
derived, by analogy, from Bateman’s solution of
successive radioactive decays (Bateman, 1910).
The simplest form of Bateman’s solution de-
scribes a linear decay chain, leading ultimately to a
stable nucleus. More complex forms have also been
used to describe, for example, the decay of radium.
The isotope radium C decays into radium C’ and
radium C”, which both decay into lead, so the
diagram contains a loop. It is highly likely that
these more complex forms are also relevant to
cancer incidence, although in the present work we
restrict attention to linear decay chains. A k-stage
radioactive decay process, depicted schematically

by the diagram
M1 /Lu,l M2 /4#1,2

Po P1 P2

\ \

is described by the Bateman equations, a set of
coupled linear first-order differential equations, in
which p;(z) denotes the quantity of objects in state i
at time :

Doy p

i 0,120

dp; .

o Heulie g d<i<k) (D
Py

dt k—1,ktk—1

where g ;. is the partial rate constant for the
transition from state j to state j+1, and g, is the
total decay rate' of state j—1. The partial decay
rates are related to the total decay rates by
constants b; ;,, called branching ratios. This
relationship takes the form

"In a model describing radioactivity, 4, , =In(2)/t, , where 1, , is the
half-life of that species. Our notation differs slightly from that of
Moolgavkar who identifies the rate constant with the state being left
rather than with the state to which the transition is being made.

iy = by oty

In the case of a linear decay chain, the branching
ratios equal unity, and the partial rate constants are
given by

Hjjr1r = Hiyr

In this simple case, Equation (11) is equivalent to
the equations derived earlier in our discussion of
cancer in a cell. Most discussions of the model
make this assumption. However, we note that not
all ‘initiated’ cells proceed to cancer, but the vast
majority are either repaired or excreted. Some
may undergo clonal expansion and multiply. This
could be modelled by taking values of the
branching ratio b; ;| less than unity (in the first
case) or greater than 1 for clonal expansion.
However this is a very simplistic view of clonal
expansion which treats the expansion as a defini-
tive process rather than a stochastic one. We are
attempting to understand this further. The reali-
zation that the multistage model only takes into
account the slow, late limiting steps in the cancer
process allows a theory in which clonal expansion
occurs rapidly, but is not noticed as a separate
stage.

However, if these branching ratios are the same
for each cell, they may be subsumed in an overall
constant factor in the formula for incidence, and
the fitted values of ux adjusted accordingly. Then
the algebra is the same as if each and every cell
eventually becomes cancerous.

We will work with linear decay chains in what
follows. In that case, the diagram of the process
simplifies to

H Hy My
Po—=>DP1 72Dk

(12)

In the earlier section, ‘Cancer in a cell’, it was
shown that the same differential equations describe
the multistage model for the formation of malig-
nant cells. Every cell eventually transforms given
sufficient time, so in a realistic model,

pk(oo)zf;ﬂf(t)dtzl (13)

In Lemma 3 we show that Equation (13) is a true
mathematical consequence of the Bateman equa-
tions with appropriate initial conditions.



The most general initial conditions for the
system Equation (11) are to allow p;(0) to be arbit-
rary nonzero constants for all i. The solution
to the system Equation (11) with general initial
conditions is

m—1 m—2 m P,-(O)e_“/r
me](t):Z (H :uj.j+]> Z (

i=0 | \j=0 j=1 H/ =G+1...m
l#]

14
Ky = ﬂ/‘) ( )

form=1,... k.

A simplifying assumption, consistent with the
use of Equation (11) to analyse the probability of a
single cell becoming cancerous (or the radioactive
decay of a single nuclide), is that the concentrations
of the later stages (or daughter nuclides) are all
initially zero. This assumption is equivalent to the
initial conditions

PO(O) =,

p0)=0 (for all i>1). (15)

With these initial conditions, the solution (Equa-
tion (14)) reduces immediately to the simpler form,
valid for me {1,... k},

m

mfl(t) =Cpy Z Xj,m eiﬂjt)
Jj=1

m—1

where ¢, = o H 7y

j=1

(16)

Here, ¢; is an empty product which is 1 by
convention, ¢, = u, , etc., and we have defined time-
independent constants

~1
Zim= I w—u)™"
/=1..m
04

(17

Equations (16) and (17) were shown, for the
linear chain, by Moolgavkar (1991) [(A.1), p.217] in
his work on the multistage theory of carcinogenesis.
When evaluating the sum in Equation (14) the user
should be warned that the terms tend to be large
and of opposite sign. Indeed when the u are equal,
another formula has to be used. The cancer
incidence in a tissue with N cells (which is the
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approximation for a person), is Nf(¢) to a very high
degree of accuracy, and

() =p. () = wepy (0.

We state our most important mathematical asser-
tions as a series of Lemmas, for which we provide
proofs in an appendix.

Lemma 1 (Solution of the Bateman equations)
Assume that p; # p; for all i # j. Then the functions
Pm(t) defined by Equation (16) and Equation (17)
solve the Bateman equations Equation (11) with
initial conditions Equation (15).

Generally, we take the initial condition o« = 1. It
is easy to see that the first nonvanishing term in a
Taylor series of p,,_(¢) is of the Armitage—Doll
form, where m is an index for an intermediate stage.
Indeed, p,,_1(¢) is the constant cm, times a linear
combination of exponentials X", ~#4!; the n'
term in the Taylor series of thls hnear comblnatlon
is clearly

m

Z ( ﬂjt)

This vanishes by algebraic identity if n<m— 1, and
for n=m—1, one may check that 7",y u'""" =1,
SO to lowest nonvanishing order,
P (D, " J(m— 1)\

The next nonvanishing term (n=m) also has a
simple form. Equation (18) with n=m becomes

Zﬂj

(18)

l’ﬂ

C(m — 1)'

1
where 1 = %Zk \/4; denotes the average u. We may
then write:

m—1

m(m_l)!(l—ﬁt+...)

pmfl(t) =cC

Substituting m =k for the last stage, we find

IH=at " '"A—pt+--)
where
k
a1ty 19
(k — 1)
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This is the Taylor expansion discussed by Mool-
gavkar. It was referred to (Moolgavkar, 1978) as the
MacLaurin series, but that is a special case of the
more general Taylor series. We use the more general
term in this paper.

As one might expect, the solution (Equation
(16)) has a simple series expansion which can be
expressed in closed form. This is given in the
following Lemma.

Lemma 2 (Taylor expansion)
Let {u,:i=1...k} be any set of nonzero constants
with w; # p; if i # j. Then

m

— il . j
E Xi,r1ze b = E : Olej
i=1

j=m—1
with o,, | =1/(m—1)!, and
(—1)i
G = M by - 1y (20)
J: iy < <

=""=b_m

if j>m. This implies that

m—1
(= e () o)

Remark 1. In various applications, it is most
convenient to use the lowest nonvanishing order
(the Armitage—Doll approximation) in this series
expansion, and it’s necessary to have conditions
which guarantee that this truncation is valid. We
compare the lowest nonvanishing order to the
(assumably better) approximation obtained by
considering higher-order terms. In particular,
let us compare the lowest nonvanishing order
(j=m—1 in the above formulae) to the following
term. In this paper, as with the papers of
Moolgavkar, we are concerned with the last stage
only and this corresponds to m=k in the above
equations. Let A, denote the n™ nonzero term in

pm—l(t) =

the Taylor expansion, which has coefficient
ak+n—2‘ . .
By a simple calculation,
AZ
S =1 (21)
A H

This formula shows that A,/A, can be arbi-
trarily large by inclusion of a fast stage or

stages, each with large . When attempting, as
we are doing, to find a model to fit the data
from ages 20 to 70 years, the constant ¢ in the
first term of Equation (19) is heavily constrained
by the data. If k& is not varied, the constant a
1s proportional to the product g, ---u,. One
can only make # arbitrarily large if this pro-
duct is fixed to the correct value. This is
discussed further in the section on determination
of k.

We will show later that if n; of the stages are
much faster than the remaining n, =k —n, stages,
then the exact solution for the k-stage model is
approximately equal to the exact solution for the
remaining n, stages, which we call slow stages.
Equation (21) indicates that, the Taylor series for
k stages converges more slowly than the Taylor
series for n, stages because inclusion of fast
stages increases the average transition constant.
In the presence of fast stages, a large number of
terms must be included before the Taylor series
becomes accurate, and consideration of only the
first and second terms in the expansion is
incorrect. However, the exact solution for the
model without the fast stages has a different
Taylor series which converges quite rapidly. This
realization leads to important practical conclu-
sions that are discussed in more detail later.
Specifically, if inclusion of a few fast stages set
7~ 1073 then Equation (21) shows that A, is 10
percent of A, at r=100. If the stages are fast
enough to set 7~ 1072 per year, then A,/A, is
of order one at 100 years. It is clear that, by
including fast stages, A,/A, can be made arbi-
trarily large.

Moolgavkar deliberately chose a set of para-
meters which included some slow, and some fast
(but not very fast) stages (see for example,
Moolgavkar, 1978, Table 1). Although the above
estimate for A,/A, does hold for Moolgavkar’s
example, a discussion of his chosen parameters
needs more careful numerical analysis. Consider
a tissue of 10° cells affected by a hypothetical
six-stage’ malignant tumor, with transition rates
(per year) given by

*Moolgavkar (1991) refers to this as a seven-stage process, but only
gives values for six transition constants. We assume here that six stages
are meant.



1074, 2x 1074, 34x 1074, 7x 1073,
8x 1073, 9x 1073,

In this example,

= 0.0046 per year

So our formula Equation (21) predicts A, = 0.46A,
at t=100 years. This is precisely what is observed in
Figure 4, which shows the exact solution, together
with its first five Taylor approximants. The numer-
ical factor relating the second approximation,
which lies below the exact curve, to the first
approximation, lying above the curve, at =100
years is seen to be about 1.46.

As noted in the introduction, 10° cells may be too
few. Bearing in mind that the model is used to fit
incidence data, each value of the six constants u
would have to be reduced by a factor of 2 if N were
increased to 64 x 10°, and the exact formula at age
t=100 years would then be only 1.28 times the
Armitage—Doll approximation.

The implications for determination of the value
of k using Moolgavkar’s parameters is discussed
later. More generally,

An+1 — (ak-‘rn—l)t - _ t ’Pn:k
An O‘k+n72 k +n ,Pnfl,k
where P, 1s the symmetric degree n polynomial in

k variables, given by X, ___; i; --- ;. These poly-
nomials satisfy

P = P, 1 + (terms involving u, ..., 1 )

It follows that for n > 2,

Ay t ratio approaching
A __k+n[’u"+ (zero as u, — oo ] (22)

n

The surprising conclusion of Equation (22) is
that, if we add one very fast (u,, ~ 10*) stage at the
end, it may be necessary to consider hundreds or
thousands of terms in the Taylor expansion in order
to attain accurate results! The rate of convergence
of this expansion is affected strongly by the
appearance of fast stages, while the exact solution
is not. This is a very important paradoxical result,
the solution for which may be found in the earlier
comments. If there are n, slow stages and n, very
fast stages, the exact solution is close to the
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Incidence I(t) (yrs™")

3
1st Approximation
25

2
Exact Solution

15 2nd Approximation

1

05

Age (yrs)
25 50 75 100 125 150 175

Figure 4. Exact solution for Moolgavkar’s example, shown with its
first five Taylor approximants.

Armitage—Doll approximation for the n; slow
stages alone; the Armitage—Doll approximation
for the full exact model with n,+n, stages is not
accurate. For equal transition probabilities, given
by the single transition constant u, the above
implies A, /A, = ut.

Lemma 3 ( Normalization)

Let py(t),...,p(t) satisfy the k-stage Bateman
equations ( Equation (11)) with any collection
(ty, ..., 1) of transition constants. Then

k

| jpk’(t)dz - (Hle ﬂl.) S ko1 (@3

j=1 K

This equation shows that given sufficient time,
the cancer process will eventually reach the last
stage.

General properties of the solutions

The general solution, for reasonable values of k,
has far too many constants to be determined by
epidemiological data alone. However, there are
various cases in which the solution of the Bateman
equations Equations (16) and (17) can be simplified
enough to depend on only a few independent
constants, even if the number of stages is large.

Equation (21) implies that the ratio of the second
term to the first in the Taylor series for /(z),

A,
A
is proportional to the average 7. But the product of

the u's is constrained by the value of the observed
incidence. With this constraint, the average u will



Multistage model of cancer development
G Ritter et al.

134

be a minimum when all the values of u are equal.
For this important special case A,/A, is much
smaller than, for example, in Moolgavkar’s case.
Another interesting result is that permuting the
stages makes no difference to the final result p/(t)
or, more generally, to x,,p,,_,(?) for any m < k. This
is self-evident physically for radioactive decay,
which is also described by the Bateman equations.
This result, used implicitly in the Armitage—Doll
approximation, is a fundamental property of the
exact solution. It may be proved as follows. It
suffices to consider a transposition of the ith stage
and the jth stage, as any permutation may
be represented as a product of transpositions.
Now y;,, is a product of (x, —,u,.)_l, where 7 # .
Applying the transposition, these terms become

(u/—,uj)_l except for the /= term, which be-
comes  (u; — ,u/)_]. The result is then
H/;éj(/u/ /u]) = Xj m*

A third general result is that if there are, say, 4
stages which proceed slowly (small, equal, values of
1) and many stages which act much faster (values of
1 that are 10 times larger), then the final result
depends only on the 4 slow stages. This is self-
evident physically and was probably implicit in the
thinking of earlier users of the multistage model.
This is proven rigorously in Lemma 6, and dis-
cussed with a specific example in the section on
measurement of k.

We pay special attention to a simple case (one
not covered by Lemma 1) in which all stages have
equal transition probabilities. This simple case is
described by Lemma 4.

Equal transition rates

Lemma 4 (Equal transition rates)
Consider the Bateman equations p; (1) = p(p;_; — p;)
arising from equal transition rates, p;=p,=...=
W= . For any natural number j<k—1, the solution
is

e*/lt(ﬂt) J

1
po= (24)
J!

In particular, for the penultimate stage,

P ()= e M (ut) "

(k — 1!
The global maximum of p;(t) occurs at the age

Lpeak = =j/u. Further, as before we have

foop,; ()dt = qupk,l(z)dz =1.
0 0

Remark 2. Since f(t) applies to a single cell, u is
very small (on the order of 10 ~?) and hence for any
nonzero number of stages, ., = j/u always occurs
at a much greater age than those contained in a
human lifespan. This important point is discussed
in detail in the earlier section, ‘Can the multistage
model ever fit the data’?

The algebraic simplicity of equation Equation
(24) makes it attractive as a starting point for our
discussions. It has two adjustable constants, k& and
1. A useful numerical example is the following.
Suppose we would like to know how the exact
solution Equation (24) differs from the first term in
its series expansion

o j+n
Pj(f) _ Z (/lt) '

(25)
n=0 ]'n'

In general the first term in the series expansion of
e (n>0 an integer) is x” and |e” "x" —x"|=
x”(l ¥). In a numerical example w1th G=
0.3, G’ = 0.01 per year and k=7 we have ut <0.2
for all ¢ in a human lifespan. Then |1 — e #| < 0.2
and so for the first Taylor remainder R; of p;(¢), we
have

=2.56x10"°. (26)

Ril=< 0
Skt 1

Equally separated transition rates

Another case which is amenable to an exact
analytical solution is when the transition constants
u; for the various stages increase by a fixed amount.
Of course, it is not necessary to assume that in the
actual cancer process the transition rates occur in
increasing order, thanks to invariance of the process
under general permutations as remarked above, so
this solution applies to the general situation when
there exists some arbitrary reordering of the
transition constants so that they increase linearly.

Lemma 5 (Equal separation)

Suppose that the transition constants =y, i,
.. 1k are uniformly separated, so that p;, , — u; =

o0 for all i and for some constant 6 > 0. Then for any

n <k, the solution is given by



P (D=C;,, e (1 —e ), 27)

r<”+n—1>
s

T(u/9)T(n)

where Cs ., = is a constant.

Remark 3. To calculate the penultimate stage,
pr—1(t), simply replace n by k in the above:
PO =Cy e (1 —e )

Remark 4. This model Equation (27), although
an exact model with unequal transition constants,
allows us to find an analytic expression for the
position of the peak. Setting p;_(1)=0 in Equa-
tion (27) leads to
(28)

J
lea = 5lln<1 + #(k — 1))

This is an exact expression. If ¢ <« u, which

corresponds to the model with equal transition

rates, the log can be expanded, leading to
k—1

Locak .

U

(29)

This agrees with what was found in Lemma 4.

Remark 5. For consistency, Lemma 5 should
reduce to the exact solution for equal transition
rates given in Lemma 4. This is true, since for any
m <k, c,, clearly approaches x"~!, and

m
Pm—1 . _
_ .t
=lim,_, E Lime "
Cm j=1

—ut1; 1—m = (_ l)j+1 —(j— 1ot
=e “lim;_,( o Z e
(G — Dim — )

j=1

— e—/lf lim 517)7161(5 (1 - e_lé)m
r o0 e — 1

m—1
—ut

(m— D

This is consistent with Lemma 4.

Remark 6. The solution obtained in Lemma 5 is
an analytic expression containing no sums or
products which would force the number of stages
k to be an integer; therefore it is amenable to
computer simulations which allow k& to be a
continuous variable. In particular, one can

Multistage model of cancer development
G Ritter et al.

135

perform nonlinear regression to optimize the
value of k, together with 6 and u which are the
other free parameters in the model given by
Equation (27).

Remark 1. The analytic solution for 7, allows
us to also find the height of the function at its peak:

(k—1)6 \*!
((k — 16+ u)

(k — 1)\ s
(=)
7

From this, one obtains the qualitative observa-
tion that large n shifts the peak down. To see
this, note that the asymptotic expansion for large
k is

P 1) = Cs 0

1 1\ ?
pk*l([peak)larg const. x . + 0<k) ,

L

KL 9 U !
where the constant is e ? ( > r <5> . This is
I

important, because it explains why, when we
attempt to fit real-world data, the curve-fitting
routine finds unrealistically high values of k, the
number of stages.

Fast and slow stages

In the discussion of Equation (21), we outlined
the effect of including a stage much faster than
the others on the Taylor expansion. In this
section we analyse this in a more precise way
(Figure 5). To illustrate the general effect which
occurs when one, or a few, stages are much faster
than the rest, we first consider a simple example,
which entails the convergence of the two-stage
solution to the single-stage solution, as the
transition rate for the second stage becomes
large. We exhibit this convergence in the function
pi(t), which corresponds to the /ast stage, in
Equations (30) and (31). If k=1 we have (for

1(1) =pi(1))

1) = e (30)

and if k=2,



Multistage model of cancer development
G Ritter et al.

136

il
Hy — Iy

iy
Hy — Hy

(1) = e M 4 e Hl, 31

One may now observe directly that Equation (31)
converges to Equation (30) in the limit that s, > u,.
In fact, this phenomenon is quite general, as
follows from Lemma 6.

Lemma 6 (Slow and fast stages)

Suppose that the first ng stages have transition
constant u, followed by one stage with transition
constant ;. Then the exact solution is given by

P )nﬁrl t
Dy i1 (D =""2 et | eI s
s nl 0
s

:eu,f( n )ﬂﬁrl |:1 _r(l + ng, l(,us - ,uf)) (32)
Hy — :uf

n !

5

Further, we assert that

limﬂ/ﬁw(yfpnﬁl(t)) = up, (1). (33)

The statement of Lemma 6 places the fast stage
at the end. However, previously we have shown that

Incidence I(t) (yrs™")

0.00006 /
0.00005
/
0.00004
/
0.00003 v
0.00002 /
- /
0.00001 o —
— /
= Age (yrs)
20 40 60 80 100
~0.00001 u=2v
Incidence It) (yrs™")
0.00006
0.00005
0.00004
0.00003
0.00002
0.00001
L= . Age (yrs)
20 40 60 80 100
~0.00001 w=50v

Figure 5. Exact solutions with three slow stages, having rates v=
5 x 1073, followed by two ‘fast’ stages at rate u. Graphs are shown for
w=2v and u=>50v. The solution S(¢, v) with ny=3 slow stages and no
fast stages is shown as a dashed line for comparison.

permuting the stages has no effect on the final
solution, i.e., on the incidence function. Therefore
Lemma 6, and in particular Equation (33), applies
to a multistage progression in which any one of the
stages is very fast compared to the others. By
induction, the same is then true of the case with
multiple fast stages.

This is an exact solution; no approximations have
been made. Our intuition is that if the fast stage is
fast enough, then it will have no effect on the
properly normalized solution, and Equation (32)
will reduce to p, (¢). This intuition is rigorously
expressed as Equa}ion (33). We note that both sides
of Equation (33) integrate to one. This generalizes
the simple observation following Equation (31). We
illustrate this general phenomenon with a specific
example. Consider the Bateman equations with 7,
stages at rate v, and the remaining k—n, stages at
rate . Let g(z,u,v) denote the solution p (1) =
up, (1), and let

S v) = e ()"
n!

S*

denote the exact solution for n, slow stages of
rate v. To illustrate that the effect of the fast stages
becomes negligible for u > v, we plot g(¢, nv, v) and
S(z, v) on the same graph for increasing values of n,
with k=35 total stages and n, =3 slow stages. For the
slow transition constant, we take a reasonable value
of 5x 1073, which is comparable to the values
chosen by Moolgavkar (1991). The relevant Bate-
man equations are

po(t) = —ppy(1),
Pi() = upy—vp,
Py =vp —vp,y,...,p5()=vp,

We conclude in this numerical example that for
1 = 50v, the effect of the faster stages is in the order
of a few per cent. In the limit as u/v — oo, we
observe that g(z, i, v) converges to S(¢,v) for all ¢.

Results and discussion
On the number of stages

In the introduction we pointed out that a funda-
mental success of the multistage model (1) was by



showing that whereas normalization constant a in
the incidence formula varied from country to
country, number of stages k stayed constant. This
they did by plotting In/ against Inz. The slope was
(k—1).

How does this change when we go to the exact
model? The theorem that one very fast stage makes
no difference to the result suggests that Armitage
and Doll were measuring the number of slow stages.
However, Moolgavkar showed a plausible set of
parameters where the Armitage—Doll approxima-
tion was 1.46 times the exact model at age r=100.
We show that a straight-line fit in log—log scale is
still good approximation in this example, and the
value of k that Armitage and Doll would have
derived in such a case is only slightly less than the
true number of stages. We investigate this as
follows.

We simulate data from the exact model using the
Moolgavkar parameters (Moolgavkar, 1978). Then
we analyse these simulated data in the Armitage—
Doll manner to derive k by fitting these data using
a least squares fit.

In Figure 6, line 1 we show the simulated data
using Moolgavkar’s parameters (squares) and the
best linear fit of In/ versus Inz. From the slope of
this line, 4.8068, we see that Armitage and Doll
would have derived 5.8 stages instead of the correct

Log-Incidence
P N

&

29 31 33 35 3.7 3.9 41 43

Log-Age t, years

Figure 6. Armitage—Doll approximation (line fit in log—log scale) of
the exact multistage model in the example proposed by Moolgavkar
(1991). 1. Squares: exact model, N=1e9, k=6, 11, =0.0001, x, =0.0002,
1;=0.0034, 11,=0.007, 15=0.008, 1,=0.009; Line (solid): least square
fit, In/=4.8068Inr—21.46; 2. Triangles: exact model, g, =0.001
(increased 10 times), Line: least square fit In/ =4.80011n7 — 19.139; 3.
Circles: exact model, z,=0.09 (increased 10 times), Line: least square
fit In/ =4.4395In7 — 18.261; 4. Dashed line: exact model x, =0.00005,
1,=0.00001, 14,=0.0017, 1, =0.0035, 15=0.004, 11,=0.0045 (all transi-
tion rates decreased 2 times), N=6.4e10 (increased 64 times).
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6.0. This is greater than the small number, 2, of
slowest stages but less than the total number of
stages. If the number of cells is 64 times greater than
Moolgavkar assumed, then the values of x must all
be reduced a factor of 2 to give similar incidence
(Figure 6, line 4), and the derived number of stages,
5.9, is even closer.

We can go further and ask whether such a
derived value of k is stable under changing an
individual transition rate u, corresponding to a
difference between cancer registries in different
countries. Line 2 of Figure 6 shows a similar plot
with one of the stages, x,, increased tenfold to
0.001. The value of k& that Armitage and Doll
would have derived is the same, 5.8. Increasing the
transition rate tenfold for the fastest stage f
resulted in k=5.4, which deviates from the exact
k by less than 10%. We conclude that, although
using an approximation can reduce the derived
number of stages, this reduction is not dramatic,
and it is stable across registries so that one of the
principal successes of the multistage model is
unaltered.

That many more mutations are present in cancers
than the 4-8 slow stages predicted from the
epidemiological data is well supported. For exam-
ple a test for mutated DNA for colon cancer
includes 21 specific mutations (Tagore et al.,
2003). Far larger numbers of mutations are known
to exist (Lengauer er al., 1998; Duensing and
Munger, 2002) as a consequence of genetic instabil-
ities caused by early stage alterations, and 11000
are reported by Stoler et al. (1999) for colon
cancers. Clearly the vast majority of these altera-
tions must occur very rapidly and thus do not affect
the age distribution of cancer, which is determined
by the much slower (and therefore rarer) rate
limiting stages.

As a strategy for reducing cancer incidence, it
appears that it is much more productive to develop
environmental, diet or behavioral strategies which
would further slow (making them less probable) the
slow stages to reduce cancers, rather than strategies
which make fast stages less probable, which would
not reduce cancers appreciably. It is a challenge to
cancer biologists to classify the stages as fast or
slow in order to identify the most effective preven-
tion strategies.
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There are arguments that numerous stages
are unnecessary for modelling, which entail a two-
stage clonal expansion (Moolgavkar and Luebeck,
2003). However, it is important to recognize that
the additional stages are part of the carcino-
genesis process, and it is clearly of interest to
possess models which reflect, in as much detail as
possible, the correct structure of the carcinogenesis
process.

Can the multistage model ever fit the data?

A salient feature of the data is that cancer incidence
appears to fall off fast above age 80, to nearly
zero at age 100 (Pompei et al., 2004). Consider an
exact model for I(z)=Nf(¢) with equal transition
rates,

k
Nu(tu)
etnk!

which, as discussed above, has its peak at 7., =
k/u. Since k is the number of stages, it is at least of
order one, and on the other hand, if the model is
applied to a single cell, then epidemiological data
requires that, even for common cancers, the transi-
tion rate x must be O(10~?). Therefore Locak X
0(10%) and the turnaround can never occur within a
human lifespan.

We now give a second argument that the turn-
around is not relevant within a human lifespan.
Note that py(7) is a linear combination of exponen-
tials, so for any set of positive, real transition
constants, it increases from zero to a peak, turns
over, and asymptotically approaches zero as t —
oo. Qualitatively, this has the same feature as the
data, and a more careful analysis is necessary to see
the problem.

As noted by Heidenreich et al. (2002), the
incidence function

Np (1)

1(1) =
@ 1 — p(0)

(34)

increases to a finite asymptote as ¢ — oco. With
stages and transition constants based on fitting
real-world data, py(¢) is around 10 ~? or smaller for
0<t<100 years, so in this range, Np;(?) is well
approximated by Equation (34), which is monotone
increasing. However, the time scale at which p;(7)

starts to turn over is precisely the scale at which
(1) becomes of order one, and the approximation
(1) <« 1 is no longer valid. In conclusion, we have
the following assertion.

Lemma 7 ( Turnover)
The turnover in p,(t) can never explain the turnover
in the data.

It is, of course possible to fit an exact solution
with Ny, = 10'° to the (monotone increasing) part
of the data set between 20 years and 70 years.
We consider both equal transition constants
(Figure 7) and equally separated transition con-
stants (Figure 8). In the region shown in Figure 7,
which corresponds to a human lifespan, the lowest-
order Taylor approximation to the exact solution
with equal transition rates is an extremely good
approximation (see Remark 1 above) and thus the
exact curve is indistinguishable to the Armitage—
Doll approximation /=ar* .

Interestingly, even though we only fitted the
equal separation model to the data up to age 70,
one can see in Figure 8 that the equal separation

model correctly predicted the next few data points.

Susceptibility differences

An early attempted explanation of the decrease in
incidence after age 80 is that the cancer-susceptible
people are being depleted. Thus the incidence levels
off and drops to zero when all the senistive people
have developed cancer. This was described by Cook
et al. (1969) who used the Armitage—Doll approx-
imation and made the simple assumption that
only a fixed fraction of population is susceptible
(sensitive), e.g., able to develop cancer. We derive a

n -1
Incidence I(t) (yrs™) Male Colon Cancer

0.008 -
0.006 .o
0.004

0.002

. Age (yrs)
20 40 60 80 100 120

-0.002 {k > 4.63811, ;1 - 0.000381135}

I Integral = 0.200074
-0.004 -

Figure 7. Fit of exact solution with equal transition constants to male

colon cancer data, with N, = 10'°.
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Figure 8. Fit of exact equal separation model to male colon cancer
data, with N, = 10'°. Although the fit was done using data up to age

cells
70, the model remains accurate to age 90.

more general expression for the age-specific inci-
dence. Let S(z) be the number of sensitive persons
at time ¢. Then

d
U S(t) = =S, (1)

where 7;(¢) is the incidence per sensitive person. Let
P be the total number of persons at t=0. This leads
to

S(1) = PCexp (- J ' Il(t’)dt’>
0

where C is the fraction of sensitive persons. The
incidence in the population, which includes both
sensitive and insensitive persons, is
new cases per unit time

1(t) = _ .
persons at risk at time ¢

—dS(1)/dt

(1—-0OP+ CPexp<—fIl(t’)dz’>
0

_ CPe*ﬂ)Il (t’)dt/ll (Z)
(1 — C)P + CPe—loht)r

- Lo (35)

1-C
1+ < )expfll(l’)dt’
C 0

The choice C=1 corresponds to the assumption
that all people are sensitive, and implies 1(z)=1,(¢).
With C=0, which corresponds to a completely
insensitive population, we have /(¢)=0. Further, for
any 0<C<1, we have I(r) —» 0 as t —» o0. Thus if
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there are any immune persons in the population,
I(¢) will eventually turn over and tend to zero
which might enable such an equation to fit the
data. The challenge is whether with reasonable
assumptions the incidence will approach zero for
all cancers within a human lifetime, as SEER data

suggests. If we define G = (1; C)expﬂ)ll(t’)dt’ then

Equation (35) implies that the equation determining
the peak, 1'(¢)=0, takes the form

I G
I G+1

In the general case, one would not expect to solve
this except numerically, but for the Armitage—Doll

case, Ij()=ar* " which implies 7;/(1, = '+

and we have

k—1_ *(1 - O)
a Ce=/k+1_C

Taylor expanding the right hand side gives the
approximate solution

k—1 \Y*
[ = .
peak (ak!(l — C)>
—13

For typical laboratory numbers, k=6, a=10""",
C=0.1, the approximation Equation (36) gives
foeax ~ 65. However, this depends sensitively on k.
With 7;(¢) given by the exact model with equal
transition rates (ETR), in a tissue with N cells we
find

(36)

N k1
ut
o e "(ut)

=1~ (N I'(k) — T'(k, w)>
1+ ex
u (k)

37

The fact that the function Igtr(z) presented in
Equation (37) is extremely sensitive to its funda-
mental parameters presents a problem from a
modelling perspective. With typical biological para-
meters of N ~ 10" and u~ 1073, the factor N/u
appearing under the exponential in Equation (37) is
of order 10'®. To obtain a reasonable function, the
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T (k) — Tk, pr)
(k)
which implies fine-tuning of £ and pu.

Cook et al. (1969) rejected this approach because
it appeared that the peak shifted with tumor
probability. In contrast we find that we can directly
fit the SEER data for our three example cancers by
adjusting the parameter values «, k, and C, and
obtain the results in Figure 9. Also shown for
comparison is the fit obtained with the senescence
model of (Pompei and Wilson (2001, 2004) I(¢) =
at*~'(1 — Bt). The fitted values of a and k are
similar for both the susceptibility and senescence
fits. Figure 10 shows the three cancers plotted on
the same axes, each with a corresponding suscept-
ibility model fit.

Both these fits to the data use the A-D
approximation, but we believe that use of the exact
model will not make a change in the general
conclusions. The senescence model modifies the
A-D assumption of the inevitability of cancer at
the cellular level by including the idea that, due to
senescence, every cell has an increasing probability
with age that it never reaches the cancerous final
stage.

The susceptibility and senescence fits are very
similar except for age ¢>105 years. The suscept-
ibility fit has a small tail and incidence never
reaches zero, while incidence does reach zero in
the senescence fit. The SEER data (and the EDO1
mouse data) actually reach zero incidence, but the
number of men alive at this age (~700) is small and
age reporting is unverified, thus there is some
uncertainty that the true incidence number is zero.
The susceptibility model requires that the fraction
of susceptible persons C be very different for each
cancer to fit the data (0.185, 0.046, 0.0095 for the

factor must cancel this divergence,

o Colon Cancer 160 -

W e o @
B B B B

Incidence per 100,000
N
8

Incidence per 100,000

8

o

Hon-Hodgkins Lystphorma 30 -

cancers shown). Although it is widely believed that
there are differences up to a factor of 3 or so in
individual susceptibility, there is no indication in
the study of chemical produced cancers that there is
such a large difference in susceptibility.

The senescence conjecture has important possible
implications on the relationship between cancer
and longevity, as well as on the age distribution
of cancer, as discussed by Pompei and Wilson
(2004). The basic idea is that as each cell ages it
tends to progress to a senescent stage, a state
characterized by normal functioning but inability
to divide and repair genomic damage. There is
evidence, although not conclusive, that as tissue
ages a larger fraction of cells senesce, and thus
tissue is slow to repair. The mathematical modelling
makes the simple assumption that at the end of a
human lifespan (~ 110 years) all cells are senescent,
and lack of repair capacity is related to the end of
life. It is the same lack of repair capacity by cell
division that stops the carcinogenesis process, and
thus produces the sharp turnover in cancer inci-
dence when a significant fraction of cells are unable
to reproduce.

Senescence and the beta model

Interestingly, the beta model introduced by Pompei
and Wilson (2001) may also be derived from a
simplified model of senescence, which we call
deterministic senescence. For this derivation, we
assume that cancer cells are mortal in the sense of
Hayflick (1965), which means that a finite length is
imposed on each chain of cell divisions. At each
point in the process, the number of divisions
remaining is called the residual doubling potential.
Assume that senescence does not affect the stage

Brain Cancer

Incidence per 100,000
>

Age, years

Age, years

0 20 40 60 80 100 120
Age, years

Figure 9. Comparison between SEER data (@), susceptibility model fit (—, a=6.3x107"%,22x107 "%, 9.6 x 1072, k=6.68, 6.98, 6.22; C=
0.185, 0.046, 0.0095) and senescence model fit (—-, a=1.90x 107", 1.36 x 107 "%, 4.7x 10~ 2, k=6.77, 5.44; £=0.0093, 0.0096, 0.01).
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Figure 10. Comparison between SEER data for male colon cancer
(O), non-Hodgkins lymphoma (4 ) and brain cancer (O), each with
susceptibility model fit.

transitions or transition rates in the Armitage—Doll
process. Assume a constant (deterministic) cell
division rate; then the residual doubling potential
for a cell decreases linearly with age.

If a malignant cell is completely senescent, so
that the residual number of doublings is zero, then
this cell does not produce observable cancer. More
generally, if the residual doubling potential is small,
then the malignant cell is limited to a small number
of descendants, and this produces an unobservable
tumor, or one which is effectively destroyed by the
immune system. A larger tumor has a proportion-
ally greater chance of survival.

Armitage—Doll theory assumes that each malig-
nant cell leads to a tumor, but naturally this cell
must undergo many divisions to produce an
observable tumor. Accordingly, the Armitage—
Doll model I=ar* " must be modified to reflect
the possibility that the cell, as it progresses to
cancer, may be simultaneously approaching mor-
tality in the sense of Hayflick. The appropriate
modification which takes account of this effect is to
introduce a linear multiplicative factor, which must
be of the form (1 — f¢), and which now represents
the conditional probability for an observable tu-
mor, given one cell which is malignant (or in the k™
stage of the multistage process) at time ¢. The
incidence function now takes the form of the
Pompei—Wilson beta model. As before, the para-
meter f may be determined through curve-fitting.
As a caveat to this approach, it must be noted that
the existence of in vivo senescence in the human
body has not been established.
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If the explanation is accepted that cellular
senescence is responsible for the rapid fall off in
cancers above age 80, there are several conse-
quences, some of which are discussed in Pompei
and Wilson (2004). For example, it is not sufficient
for a drug or environmental agent (or lack thereof)
to be shown to reduce cancer. If the action of the
drug or agent is to increase senescence to reduce
cancer, then it will be accompanied by the serious
side effect of reduction in longevity. Alterations in
the p53 gene have been shown to do this.

Melatonin, a known antioxidant that reduces
DNA damage, has been shown in mice experiments
to both increase cancers and increase longevity,
suggesting that antioxidants might require more
careful consideration. If a drug or environmental
agent could be targeted to one or more specific
stages in the multistage cancer interpretation, then
perhaps reduction in cancer might be accomplished
without reduction in longevity. This is seems to be
the case when known strong carcinogens are
prevented from acting on cells, such as stopping
smoking, or stopping S-naphthylamine inhalation.

Another consequence is that drugs such as
cortisone, which are carcinogenic and dangerous
for use on the young, may well be relatively safe for
anyone over age 80, for treatment, for example, of
arthritis. Further study of this point is very
important. If modeling and tests bear this out, it
would be welcome news for the aged.

At the very least, anyone testing or regulating an
anticancer drug must be aware of the possibility
that the drug might be acting as an accelerator of
senescence, which would reduce life expectancy, and
demand the appropriate test regimen.

Conclusions

This study set out to investigate whether it is
possible to describe cancer incidence above age 80
using the exact multistage model but no other
assumptions. We prove rigorously that it is not
possible. In the process we have proved several
theorems about the multistage model that may be
useful in further investigations. For example, we
conclude that the multistage model considers only
the slow stages, and that the incidence function is
invariant under permutation of the rate constants.
Common cancers are thought to have 4-8 slow
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stages; our conclusion is that there could be many
more fast stages, without an appreciable effect on
the age distribution of cancer. The possible number
of these ‘fast’ stages depends on how much faster
they are. If fast stages are present, they may
dramatically affect the convergence of the Taylor
expansion.

We found that with additional biological as-
sumptions, it is possible to fit the data and we
presented two possibilities. One is the addition of
cellular senescence; the other is an assumption that
most people are not susceptible to cancer, and in
fact for rare cancers, very few people are suscep-
tible.

The incidence data alone cannot decide between
the model that there are large differences in
susceptibility, and the model that cellular senes-
cence is important, or whether either one is likely.
We merely present the data fits, and the problems in
their understanding for others to consider.
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Appendix A

Proofs of assertions
Proof of Lemma 1.

Con1 = Hp—1.mCm and Lim+1 = (i1 — /‘j)ilxjwm
forall j #m—+ 1.

d m+1
me = Cerl Z X_/’,m+1(_luj)eiﬂjt
t =

m+1

— E o —u;t
=Cpti Xj,mel(lumel :uj)e !

Jj=1

m+1
—u;t
/umeIXj,erle !
j=1

i1

m+1

— E —t

- lumfl,mcm Xj,me ! luerlpm
Jj=1

= :umfl,mpmfl - lum+1pm

as desired.

Proof of Lemma 2. Equation (20) is proved by
double induction on m and j. The series Xo; 7
converges absolutely for all 1€ C, since Equation
(16) is a linear combination of exponentials.

Proof of Lemma 3. pt)=p, (1), so the
lemma is equivalent to the statement that for
O<i<k,

[ =1/p,.
0

Generally speaking, p;(¢) represents the number
of objects in state i of the process (normalized by
the initial condition). Considering the process for
one object forces the initial condition to be py(0) =
1, p;(0)=0, i>1, and it follows that p;(r)=1 if the
object is in state i, and zero otherwise. It is then
obvious that f;c p()dt does not depend on the rates
to get into state i, and is inversely proportional to
the rate to get out of state i. Therefore

pr,-(l)dl = l/ﬂi-s-l
0
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(this can also be proved by a tedious direct
computation). Setting i=k —1 gives the result that

J P (Ddt =1,
0

as desired.
Proof of Lemma 4.

/ _ 1 —ut j—1 eim(:ut)j
p; ()= 'u[(j—l)!e M uty —T

= pu(p; =Dy

We infer that the global maximum occurs at the
solution of p;=p;_, which immediately gives ¢ =
j/u. The value of the integral follows by direct
computation, as well as by Lemma 3 in the limit of
equal transition rates.

Proof of Lemma 5. p;=p+(G—1)35, j=1, so
that p, — p; = (p —j)J. This implies that

1 S

- 51—}1 — 51—}1

ki pILp—j HQ_gHQ
P#J

51—}1(_1)]'+1
G — DWn — )
n—2

¢, = H,uj = H(,u +id)=0""" <,u>
i=1 i=0 0/ 1

F<'u+n—1>
_5}171 0

B [(u/6)

where in the last line we have made use of the
Pochhammer symbol or ‘forward factorial’ and its
identity in terms of gamma functions

(@,=ala+1)...(a+n—1)=T(a+n)/T(a)

We find by direct calculation that

i (_1)j+1
G— Dltn—°

=1

st _6’6(1 _ efté)n
(e — DI'(n)
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hence

n
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This completes the proof.

Proof of Lemma 6. Let A be any constant.
In general, the solution of the differential equa-
tion

()= Af (1) + g(v), f(0)=0

where g is an arbitrary function and f is to be
solved for, is given by

f() = eA’fe’Axg(x)dx .
0
Suppose that stages zero through n, are described
by the transition constant u, and the stages n;
through k are described by transition constant s, .
Later we will consider the limit g, — co while
keeping u, fixed. This means that

d
dtpnﬂtl - /uspnA /ufpnijl .

By the above reasoning with 4 = —u,, g=up,,
this implies that

t
P 1(D) = e_"/”J erup, (X)dx .
. :

However, from our solution of the model with
equal transition rates, we know that
1

n ()=
P ' nseiﬂsx(lusx)nx

so we have

(qu)”.\ +1
|

5*

t
P10 = ef”ftj s THIX s
B 0

This is as far as we can go without the use of
special functions. To proceed, note that

Jle—xxx/)’dx:ﬂr(ﬁ) - r(l + ﬁ,tcx) .
0

Apply this with o= u —p,, and f=n. This
gives

nI(n) — T + ng, tu, — w))
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0 (g — pp)

We infer that
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We note that the last line is precisely Equation
(32), and completes the proof of that assertion. It
remains to examine the limit as p, - +oo. Ele-
mentary methods of asymptotic analysis show that
for fixed @ and |z| - oo,

Ia,z)=z""te "1+ 0(z"")).

Thus, neglecting terms proportional to inverse
powers of u,, we find
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This completes the proof. We remark in passing
that

U ng+1
P 1) = ( : ) e "y(n,
‘ Hs — Hy

+ 1, g — up))/m!

where y is the lower incomplete gamma function.



