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Introduction
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When Doctors Robert Weinberg and Douglas Hanahan first published “The Hallmarks of Cancer” in 
Cell, the disease research world changed forever. At the time, most researchers were focused on 
the nature of aberrant signaling in their specific research area. These visionaries thought, what if 
the complexity of cancer can be broken down into smaller subsets of general underlying principles? 
For them, it seemed a useful exercise to step back and look at the commonality between what all 
researchers had discovered.

The initial publication proposed six hallmarks of cancer cells. Robert Weinberg said in an interview 
with The Naked Scientists that they had no way of knowing the paper would be so impactful or 
cited so many times after its initial publication in 2001. What they expected to fade quietly into pub 
history became a seminal contribution to the research community. So, in 2011 they expanded their 
theory to include four other hallmarks to give us the ten hallmarks we recognize today.

Weinberg and Hanahan wanted to contribute something new and useful, a tool for researchers to 
further discovery. It’s with that spirit that we introduce The Researcher’s Guide to the Hallmarks 
of Cancer. Here we present an introduction to Weinberg and Hanahan’s hallmarks, in which we’ve 
also identified key targets for research to get you started.

Which pathways are hijacked or manipulated in each of the hallmarks? Which proteins can be 
targeted to combat the adverse mechanisms of cancer cells? These are important questions, and 
this guide helps provide the answers.

Chris Sumner 
Communications Specialist 
Cell Signaling Technology
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One thing we know about cancer cells: they can resist death. They evade apoptosis, the mechanism that 
programs cell death once cells become damaged. Normally, apoptosis helps keep an organism healthy 
through growth and development, maintaining body tissue by removing infected or damaged cells. But 
cancer cells do not follow this process, no matter how abnormally they grow.

The cancer cells may alter the mechanisms that detect the damage or irregularities, preventing proper 
signaling and apoptosis activation. Cancer cells may also introduce defects in the downstream signaling 
itself, or the proteins involved in apoptosis, which would also prevent proper apoptosis (1,2).

Apoptosis is also significant in the hallmark Evading Growth Suppressors, but that refers to apoptosis 
triggered by external signals. With this hallmark, we’re referring to intrinsic apoptosis, in which the apoptotic 
program never begins.

To discover how cancer cells evade cell death, we must first investigate the different pathways through 
which apoptosis may occur.

Apoptosis can be induced through the activation of death receptors.

i.  Caspase-8: apoptosis is induced through several receptors that activate caspase-8 and lead to the 
release of the caspase-8 active fragments, which then cleave and activate downstream caspases.

ii.  RIP kinases: (near the receptors in this pathway) are important regulators of cellular stress that trigger 
pro-survival and inflammatory responses through the activation of NF-kB, as well as pro-apoptotic 
pathways.

iii.  Bcl-2: exerts a survival function in response to a wide range of apoptotic stimuli through inhibition of 
mitochondrial cytochrome c release.

iv.  p53: the “master switch,” a tumor suppressor protein that plays a major role in cellular response to 
DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and 
DNA repair or to apoptosis. p53 can be phosphorylated and acetylated at multiple sites by a number of 
proteins, including Chk2 and ATM.

References:
1.  Hanahan D, Weinberg RA (March 2011). “Hallmarks of Cancer: the next generation”. Cell. 144 (5):646-74. doi: 10.1016/j.cell.2011.02.013.

2.  Elmore, S (June 2007). “Apoptosis: a review of programmed cell death”. Toxicologic Pathology. 35 (4): 495–516.  doi: 
10.1080/01926230701320337. PMC 2117903. PMID 17562483

Resisting  
Cell Death
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Cancer cells need a lot of energy to grow fast—to do so, they show abnormal metabolic pathways.

Most mammalian cells use glucose as a fuel source. Glucose is metabolized by glycolysis in a multistep set 
of reactions, resulting in the creation of pyruvate. In typical cells under normal oxygen levels, much of this 
pyruvate enters the mitochondria, where it is oxidized by the Krebs Cycle to generate ATP to meet the cell’s 
energy demands.

However, in cancer cells or other highly proliferative cell types, much of the pyruvate from glycolysis is 
directed away from the mitochondria to create lactate through the action of lactate dehydrogenase (LDH/
LDHA)—a process typically reserved for the low oxygen state. In contrast to mitochondrial glycolysis, lactate 
production in the presence of oxygen is termed “aerobic glycolysis” or the Warburg Effect. Several signaling 
pathways contribute to the Warburg Effect and other metabolic phenotypes of cancer cells. If you look at 
the pathway, you might notice PI3K/Akt, mTOR, Erk1/2 MAPK, ULK1 (Autophagy), p53, HIF1α (Hypoxia – 
Angiogenesis), and AMPK all represented.

Cancer cells frequently use glutamine as another fuel source, which enters the mitochondria and can 
be used to replenish Krebs Cycle intermediates or to produce more pyruvate through the action of malic 
enzyme, or to produce building blocks to help the increased cell growth.

Cancer cells can become addicted to glutamine, with glutamine itself promoting cell proliferation. For this 
reason, glutamine metabolism is becoming a hot research area for cancer researchers. Because glycolysis 
is an intricate process, influenced by so many factors, there are many pathways to research, such as the 

Warburg Effect pathway, Energy Metabolism pathway, and Glutamine Signaling pathway.

References:
1. Hanahan D, Weinberg RA (January 2000). “The Hallmarks of Cancer”. Cell. 100 (1): 57–70. doi:10.1016/S0092-8674(00)81683-9

2.  Hanahan D, Weinberg RA (March 2011). “Hallmarks of Cancer: the next generation”. Cell. 144 (5):646-74. doi: 10.1016/j.cell.2011.02.013
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Cancer cells stimulate the growth of blood vessels to supply nutrients to tumors. Angiogenesis is the formation 
of new blood vessels from pre-existing blood vessels. This plays an important role in tumor growth.

Benign tumors can exist in a dormant state, which can be driven by inadequate access to sufficient blood 
supply. However, the “angiogenic switch” occurs when angiogenesis is activated in a dormant tumor, and 
growth factors are secreted to induce sprouting and chemotaxis of endothelial cells toward the tumor mass.

Within the hypoxic environment of the tumor mass, hypoxia inducible factor-1 (HIF-1) is stabilized and activates 
the expression of multiple genes contributing to the angiogenic process, including vascular endothelial growth 

factor (VEGF) and fibroblast growth factor (bFGF), or platelet-derived growth factor (PDGF).
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PI3K/Akt MAPK/Erk mTOR

Cancer cells stimulate their own growth, which means they become self-sufficient in growth signals and no longer 
depend on external signals, such as epidermal growth factor (EGF/EGFR). Proliferation depends highly on these 
three important pathways: Akt, MAPK/Erk, and mTOR.

Akt, also known as Protein Kinase B (PKB), represents a family of serine/threonine protein kinases, Akt1, Akt2, 
and Akt3. Akt1 (v-Akt) was originally discovered as a proto-oncogene and plays a critical role in regulating diverse 
cellular functions, which include metabolism, growth, proliferation, survival, transcription, and protein synthesis. 
Akt is activated by various extracellular and intracellular signals, most involving the lipid kinase phosphoinositide 
3-kinase (PI3K). It is also a major regulator of cell survival by inhibiting the apoptotic effects of signaling pathways 
and proteins (like FoxO1).

Mitogen activated protein kinases (MAPKs) are the central component in numerous signaling cascades that 
transmit growth, proliferation, and survival signals from the cell surface to the nucleus. Stimulation of receptor-
tyrosine kinases (RTKs) by growth factors, engagement of integrins, or changes in cellular homeostasis (eg, 
stress) promote the activation of signaling pathways involving Erk (extracellular regulated kinase), p38 MAPK, or 
Jnk (c-Jun N-terminal kinase). Each of these kinases, in turn, promotes activation of transcription factors such as 
c-Jun, Ets, Alk, and ATF resulting in cellular growth, survival, repair, and proliferation.

mTOR (mammalian target of rapamycin) is a protein kinase that functions as an ATP and amino acid sensor to 
balance nutrient and energy availability with cellular growth. mTOR can also be activated or inhibited by other 
signaling pathways involving Akt, Erk, and AMPK. mTOR in turn regulates a series of metabolic enzymes and other 
protein kinases that modulate lipid metabolism and biogenesis cellular growth and proliferation and autophagy.
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Cancer cells can revert to a pre-differentiated, stem-cell-like phenotype, allowing uninhibited cellular division and other 
metabolic adaptations that enable survival in adverse conditions.

While there are multiple signaling pathways involved in these changes, two key components enable replicative immortality, 
Hippo and WNT. There are multiple pathways involved in this characteristic of cancer cells. Below, we’ll focus on two of 
these key pathways: Hippo signaling and Wnt signaling.

Hippo signaling is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, apoptosis, 
and stem cell self-renewal. In addition, dysregulation of the Hippo pathway contributes to cancer development. Important 
targets include:

•  YAP and TAZ are key mediators to Hippo signaling. YAP acts as a transcriptional co-activator, can be phosphorylated 
at multiple sites and translocates from the nucleus to the cytoplasm

•  When the Hippo pathway is turned off, YAP is phosphorylated, translocates to the nucleus and is associated with 
various transcription factors, including the TEAD YAP/TEAD complexes regulate the expression of genes involved in 
cell proliferation and apoptosis.

The Wnt/β-Catenin pathway is another evolutionarily conserved mechanism that contributed to cancer’s ability to replicate 
indefinitely. This pathway regulates stem cell pluripotency and cell fate decisions during development. Wnt signaling has 
also been shown to promote nuclear accumulation of transcriptional regulators implicated in cancer, such as TAZ. Key 
regulators include:

•  β-Catenin is a key downstream effector in the Wnt signaling pathway. It is implicated in two major biological 
processes in vertebrates: early embryonic development and tumorigenesis. It can translocate to the nucleus.

•  LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the 
nucleus to promote the transcription of target genes upon activation of Wnt signaling.

References:
1. Hanahan D, Weinberg RA (January 2000). “The Hallmarks of Cancer”. Cell. 100 (1): 57–70. doi:10.1016/S0092-8674(00)81683-9
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Cancer cells resist inhibitory signals that might otherwise stop their growth. The major pathways involved are Autophagy 
and Death Receptor Signaling (Apoptosis), both of which can ultimately lead to cell death, and reduction in tumor growth.

Autophagy is a dynamic cellular recycling system that results in the degradation of cytoplasmic contents, abnormal protein 
aggregates, and excess or damaged organelles so that the building blocks (e.g., amino acids) can be used to create new 
cellular components. Therefore, autophagy is a survival-promoting process. Cancers can upregulate autophagy to survive 
microenvironmental stress and to increase growth and aggressiveness. The autophagy process involves the formation of 
an autophagosome, which then fuses with lysosomes to form an autophagolysosome. The process is regulated by mTOR/
AMPK/PI3K/MAPK pathways.

Proteins of Interest:

•  Atg16L1 plays a key role in helping to form a huge complex that then is needed to form the autophagosomes, the 
structures that deliver cytoplasmic components to the lysosomes

•  Sequestosome 1 (SQSTM1, p62) is a ubiquitin binding protein that interacts with ubiquitin and provides a scaffold 
for several signaling proteins. It triggers degradation of proteins through the proteasome or lysosome

•  Autophagy marker Light Chain 3 (LC3) becomes associated with autophagic vesicles. The presence of LC3 in 
autophagosomes and the conversion of LC3 to LC3-II have been used as indicators of autophagy

• Atg1/ULK1 can act as a convergence point for multiple signals that control autophagy

Apoptosis (programmed cell death) can be induced through the activation of death receptors. 

Proteins of Interest:

•  Caspase-8: Apoptosis is induced through several receptors which activate caspase-8 and lead to the release of the 
caspase-8 active fragments, which then cleave and activate downstream caspases.

•  RIP kinases are important regulators of cellular stress that trigger pro-survival and inflammatory responses through 
the activation of NF-κB, as well as pro-apoptotic pathways

•  Bcl-2 exerts a survival function in response to a wide range of apoptotic stimuli through inhibition of mitochondrial 
cytochrome c release
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Some cancer cells adapt mechanisms to evade detection and destruction by the host’s immune system. One way 
cells do this is by hijacking normal mechanisms of immune checkpoint control and modulation of the innate immune 
response via STING.

Immune checkpoints refer to the built-in control mechanisms of the immune system that maintain self-
tolerance and help to avoid collateral damage during a physiological immune response. It is now evident that 
tumors engineer microenvironments to evade immune surveillance and attack, particularly by modulating 
certain immune-checkpoint pathways.

Tumor-specific T cells must discriminate between destruction of the tumor cell and survival of the target cell. Important 
for discrimination are proteins on both the T-cell and the target cell:

•  CD8 is a T cell and the coreceptor for the T cell receptor (TCR). These two distinct structures recognize the 
Antigen–Major Histocompatibility Complex (MHC). In tumors, T cells are also known as tumor infiltrating 
lymphocytes (TIL), present in high abundance at the tumor site to influence overall survival. During cancer 
therapy, TILs are sometimes removed from a patient’s tumor and are then treated with substances that activate 
the lymphocytes to help them better kill the patient’s cancer cells. 

•  PD-L1 and PD-L2 (programmed cell death proteins) are transmembrane proteins that suppress the adaptive arm 
of the immune system during particular events such as pregnancy, tissue allografts, autoimmune disease and 
other disease states like hepatitis. PD-1 on the T-cell is activated by the cell surface ligands on the tumor cell. 
Upregulation of PD-L1 may allow cancers to evade the host immune system.

•  TIM-3 is an inhibitory molecule that is induced following T cell activation. As a negative regulatory immune 
checkpoint, it is detected in different types of immune cells, including T cells, regulatory T cells (Tregs), dendritic 
cells (DCs), B cells, macrophages, nature killer (NK) cells, and mast cells. TIM-3 inhibits antitumor immunity by 
mediating T-cell exhaustion.

STING (stimulator of interferon genes) is a key mediator of innate immunity, and the STING pathway has been shown 
to be involved in the induction of an anti-tumor immune response. STING is responsible for regulation of type-I 
interferon production and cellular defense against intracellular pathogens (like bacteria or viruses). Key regulators of 
the STING pathway are:

•  Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat 
pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection

•  TING is a signaling molecule associated with the endoplasmic reticulum (ER) and is essential for controlling the 
transcription of numerous host defense genes (including type I interferons (IFNs) and pro-inflammatory cytokines) 
following the recognition of aberrant DNA species or cyclic dinucleotides in the cytosol of the cell. Sting can 
translocate out of the ER upon activation.

Avoiding Immune  
Destruction
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“It is now evident that tumors 
engineer microenvironments 
to evade immune surveillance 
and attack....”
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Not all cancer cells are equal, they evolve in response to selective pressure driven by accumulation of mutations. 
Cancer cells have to out-compete nearby cells for nutrients and other resources, avoid immune cell attack, and 
suppress apoptotic self-destruction.

Due to the aberrant proliferation associated with cancer cells, there is an increased tendency of genomic changes 
and mutations that contribute to the damage of multiple genes regulating cell division and tumor suppression. This 
is known as genomic instability. Genomic instability has the tendency to compound in cancer cells, since survival-
enhancing mutations increase the probability that those mutations will propagate in future cells.

A mutation is an alteration of an organism’s DNA sequence. The nucleotides that compose our DNA can be added, 
replaced, or deleted, and single- or double-stranded breaks can occur within the DNA strand. Complete sections of 
DNA can also swap positions, be inadvertently replicated, or deleted. Most of these mutations are not cancer-related. 
They can either be spontaneous or the result of environmental insults like chemicals and radiation. Despite the high 
probability that such mutations can occur, our DNA is maintained relatively error-free. Our genome surveillance and 
maintenance systems, mitotic checkpoints and DNA repair mechanisms are always working to mitigate common 
daily factors that attempt to mutate our genetic code. A defect in any of these systems can increase the DNA’s 
susceptibility to mutations, resulting in genomic instability and an increased risk of malignancy.

 One such mechanism is the G2/M DNA damage checkpoint, which serves to prevent the cell from entering mitosis 
(M-phase) with genomic DNA damage, facilitating genome surveillance and DNA repair. There are several key 
proteins involved:

•  DNA-dependent protein kinase (DNA-PK), a serine/threonine kinase complex composed of a heterodimer of 
Ku proteins (Ku70/Ku80) and the catalytic subunit DNA-PKcs, is deployed to the site of double-stranded DNA 
breaks almost instantly to initiate repair via non-homologous end joining.

•  BRCA1 and BRCA2, two tumor suppressors that are found in breast and other tissue, contribute to DNA repair, 
chromosomal stability and transcriptional regulation in response to DNA damage. Studies have shown that, 
in response to DNA damage, BRCA1 is hyperphosphorylated and translocated to specific sites within the 
replication fork. BRCA1 has also been shown to regulate the expression levels of several genes activated in 
response to DNA damage. In addition, BRCA1 is required for the S-phase and G2/M-phase mitotic checkpoints. 
BRCA2 plays a slightly different role than BRCA1 and is predominantly active in maintaining chromosomal 
stability and mitotic recombination. Both BRCA1 and BRCA2 have been shown to repair double-stranded DNA 
breaks via homologous recombination.

•  Chk1 and Chk2 are key signaling transducers that are part of a complex network of gene integrity checkpoints, 
damage detectors and tumor suppressors.

•  p53 is also known as the “guardian of the genome” for its role in conserving genomic stability. p53 plays a 
central role in in a pathway that recognizes and mitigates oncogenic stress by halting proliferation and inducing 
apoptosis/senescence in an attempt to allay accumulating DNA damage that could lead to malignancy. (Fun 
fact, elephants have over 20 copies of the p53 gene to protect them from mutations.)

Genome Instability  
and Mutation
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Aside from the genomic instability that arises from compounding DNA mutations, aberrant epigenetic modifications 
can also dramatically change functional protein levels and affect genomic integrity. Two epigenetic mechanisms 
that play an important role in genomic instability are DNA methylation and histone modifications. Hyper- and/or 
hypomethylation of regulatory regions within genes can mimic DNA mutations and promote tumor progression. In 
addition, the remodeling of chromatin structure via epigenetic modifications to histones can permit chromosomal 
rearrangements that lead to chromosomal instability. Together, these epigenetic changes can also affect cell cycle 

progression and checkpoint regulation, further contributing to genomic instability and cancer progression.
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Cancer cells hijack inflammatory mechanisms to promote their own growth and survival. During a normal inflammatory 
response by the innate and adaptive immune system, immune cells carry out their designated task of engulfing and/or 
destroying foreign invaders.

Within the complex tumor microenvironment, the same infection-fighting immune cells are corrupted by cancer cells. As 
a result, instead of destroying the transformed cells, the anti-tumor immune cells are subverted into tumor-promoting 
immune cells that secrete pro-survival, pro-migration, and anti-detection factors that allow tumor growth and metastasis. 
Important molecules and signaling pathways in mediating the immune response to the tumor microenvironment include 
NF-κB, inflammasome signaling, tumor-infiltrating immune cell markers, and immune checkpoint signaling.

NF-κB
In immune cells, NF-κB signaling regulates the transcription of genes, influencing innate and adaptive immunity, 
inflammation, stress responses, B-cell development, and cytokine/chemokine release. In unstimulated cells, NF-κB is in 
a complex with IκB inhibitory proteins in the cytoplasm. Upon activation, IκB proteins are phosphorylated, then targeted 
for rapid degradation through the ubiquitin-proteasome system. Removal of IκB proteins releases the sequestered NF-κB, 
allowing its entry into the nucleus where it can regulate gene expression.

NF-κB signaling in cancer and immune cells within the tumor microenvironment has been particularly implicated in the 
epithelial-to-mesenchymal transition (EMT) of cells on the tumor border, allowing the detachment and migration of the 
tumor mass. EMT is a classic hallmark of malignant cancers. Thus, the cross talk between NF-κB signaling in immune-
infiltrating cells and cancer cells establishes an environment that promotes tumor growth, invasion, and malignancy in 
cyclical feedforward manner.

Inflammasome Signaling
The innate immune system is the first line of defense in protection from pathogenic microbes and host-derived signals of 
cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, 
which are multiprotein complexes that assemble in the cytosol. The inflammasome promotes the cleavage of caspase-1 
and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18. The best characterized inflammasome complex 
is the NLRP3 complex, which contains NLRP3, ASC (an adaptor protein) and a number of other proteins.

Tumor-infiltrating Markers
The immune system can identify and eliminate cancer cells through both innate and adaptive mechanisms; however, 
such antitumor responses can be inhibited by the microenvironment through a process known as immunosuppression. 
Cancer immunotherapy aims to manipulate both immunosuppressive and immunostimulatory mechanisms to increase 
the anticancer immune response. Therefore, it is important to understand tumor-infiltrating immune cells and their role in 
tumor growth and suppression.

Tumor-infiltrating immune cells are derived from either a myeloid or lymphoid cell lineage. The abundance and subtype of 
immune cells within a tumor microenvironment correlate with prognosis. In addition, careful analysis of these two origins can 
lead to the development of suitable immunotherapeutic strategies for patients.

Tumor-promoting  
Inflammation
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Once a tumor is established, it can circumvent immune detection through various mechanisms including antigen loss, 
down-regulation of major histocompatibility molecules, alteration of the endogenous antigen presentation pathways, and 
immune suppression via cytokine secretion. Along with their ability to evade detection by the immune system, tumors 
can also hijack immune cells to promote self-growth and metastasis. Immune suppression and subversion by a tumor 
generally occur in a step-wise manner.

Immune Checkpoints
Immune checkpoints refer to the built-in control mechanisms of the immune system that maintain self-tolerance and 
help to avoid collateral damage during a physiological immune response. Research has shown that tumors engineer 
microenvironments to evade immune surveillance and attack, particularly by modulating certain immune checkpoint 
pathways3.

Because T cells are the primary effector immune cells, they express multiple autoinhibitory cell surface receptors, such 
as lymphocyte-activation gene 3 (LAG-3), programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4), that modulate their response. Within the tumor microenvironment, tumor cells can upregulate the 
ligands to these receptors to enhance tumor tolerance and evade eradication by the immune system.

In recent years, pharmacological modulators of these ligand-receptor interactions, known as immune checkpoint 
therapies, have been intensely researched and deployed as novel immunotherapy agents to treat cancers. Of particular 
interest are monoclonal antibodies against PD-1 and CTLA-4. Given the early success of these immune checkpoint 
therapies in activating anti-tumor immune responses, creating immunotherapies targeting other co-inhibitory and co-
stimulatory receptors and their ligands in order appears to be a compelling therapeutic strategy.

Learn more about the pathways and proteins involved in Tumor-promoting Inflammation:

• NF-κB Signaling

• Inflammasome Signaling

• Tumor-infiltrating Markers

• Immune Checkpoints in the TME
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Tissue invasion is the mechanism by which tumor cells expand into nearby environments. Metastasis refers to the 
process of tumor cells breaking away from the primary tumor, migrating to a new location and establishing a new, or 
secondary tumor, in the new environment. Both of these complex processes leverage existing cellular mechanisms, 
such as the Adherens Junction Signaling pathway, to enable invasion and migration of the tumor cells.

Adherens junctions are dynamic structures that form, strengthen and spread, degrade, and then re-form as 
their associated proteins create connections with counterparts from adjacent cells. The Adherens junction 
serves multiple functions, such as initiation and stabilization of cell-cell adhesion, regulation of the actin 
cytoskeleton, intracellular signaling, and transcriptional regulation. They can appear as bands encircling the cell 
(zonula adherens) or as spots of attachment to the extracellular matrix (adhesion plaques).

Under normal conditions, this helps create order among the cells. Cell-cell junctions link cells to adjacent cells 
in tissue. They also regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell 
proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt 
homeostasis and are common in genetic abnormalities and cancers. 

The connection between cell junctions and the cytoskeleton is still under investigation. It may be more dynamic than 
originally considered and may rely on multiple, weak associations between the cadherin-catenin complex and the 
actin cytoskeleton or rely on other membrane-associated proteins.

Learn more about Adherens Junction Signaling and the proteins involved.
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Stay at the forefront of immuno-oncology research with our 
comprehensive portfolio of IHC-validated antibodies against key 
translational targets.

Our team of scientists develop, characterize, and validate our 
antibodies, ensuring they are specific, sensitive, and consistent 
from lot-to-lot.

That’s how we know that they’ll work for you the first time, every time.

Learn More www.cst-science.com/tumorimmunology

Images made using using our IHC-validated recombinant monoclonal antibodies.
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Examine Tumor Immunology 
Targets with Antibodies 
You Can Trust.  

1. GITR (D9I9D) Rabbit mAb (IHC Preferred) #68014 (lung). 2. PD-1 (D4W2J) XP® Rabbit mAb #86163 (colon). 3. TIM-3 (yellow), CD8α (magenta), PD-1 (green), 
CD68 (Red), LAG3 (orange), Pan-Keratin (cyan) on FFPE NSCLC. 4. PD-L1 (E1L3N®) XP® Rabbit mAb #13684 (lung). 5. PD-L2 (orange), PD-L1 (E1L3N®) (red), CD68 
(green), PD-1 (yellow), CD8α (magenta) & Pan-Keratin (cyan) on FFPE tonsil. 6. PD-1 (green), CD68 (yellow), PD-L1 (E1L3N®) (magenta), PD-L2 (red), CD8α (orange), 
Pan-Keratin (cyan), DAPI (blue) on FFPE NSCLC. 7. IDO (D5J4E™) Rabbit mAb #86630 (breast). 8. PD-1 (green), TIM-3 (yellow), B7-H4 (negative), LAG3 (magenta), B7-
H3 (red) & VISTA (orange) on FFPE NSCLC. 9. PD-L1 (E1L3N®) (red), PD-1 (green), TIM-3 (yellow), CD8α (magenta), LAG3 (orange), Pan-Keratin (cyan) on FFPE breast 
adenocarcinoma. 10. TIM-3 (D5D5R™) XP® Rabbit mAb #45208 (tonsil).
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Discovering Pathways Together for 20 Years 
Over the last 20 years, our mission at Cell Signaling Technology has been to support 
the local Community, make a positive impact in biological Science, and provide 
products that ensure complete Trust in the results. You haven’t just been along for the 
ride. You’ve helped us define what we stand for and live it every day. You’ve inspired us 
to think bigger and tackle greater challenges. Thank you for standing with us.

For the next 20, we’ll keep delivering the most Consistent, Sensitive, and 
Trustworthy antibodies possible because we believe every antibody should create 
a pathway to success. 
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