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Origin and function of the yolk sac in primate
embryogenesis
Connor Ross1,2 & Thorsten E. Boroviak 1,2,3✉

Human embryogenesis is hallmarked by two phases of yolk sac development. The primate

hypoblast gives rise to a transient primary yolk sac, which is rapidly superseded by a sec-

ondary yolk sac during gastrulation. Moreover, primate embryos form extraembryonic

mesoderm prior to gastrulation, in contrast to mouse. The function of the primary yolk sac

and the origin of extraembryonic mesoderm remain unclear. Here, we hypothesise that the

hypoblast-derived primary yolk sac serves as a source for early extraembryonic mesoderm,

which is supplemented with mesoderm from the gastrulating embryo. We discuss the

intricate relationship between the yolk sac and the primate embryo and highlight the pivotal

role of the yolk sac as a multifunctional hub for haematopoiesis, germ cell development and

nutritional supply.

The yolk sac is phylogenetically the oldest extraembryonic membrane to support embry-
ogenesis. It evolved in our aquatic ancestors >500 million years ago1 and its original
function was to absorb nutrients deposited in the yolk. Despite the absence of yolk in the

eggs of placental mammals, the yolk sac has remained an integral part of embryonic develop-
ment. Human and non-human primates are no exception.

The mammalian yolk sac originates from the hypoblast (also known as primitive endoderm),
which is specified at the late blastocyst stage prior to embryo implantation. In human and non-
human primates, yolk sac formation entails the generation of a transient primary yolk sac—
before the establishment of a secondary yolk sac. Primary yolk sac formation coincides with the
emergence of extraembryonic mesoderm after implantation. Extraembryonic mesoderm is an
integral part of amnion, yolk sac, allantois and chorion (Box 1), with critical roles in vascu-
larisation and nutrient transport. Rodent extraembryonic mesoderm originates from the embryo
proper during gastrulation. Interestingly, primate extraembryonic mesoderm is specified prior to
gastrulation and the developmental origin of this early mesoderm population has been subject to
intensive debate.

In this review, we briefly touch upon the evolutionary origin of the yolk sac and subsequently
shift our focus towards the developmental origin of the primate yolk sac. We collate our current
knowledge on the emergence of the yolk sac’s founding population, the hypoblast, its progression
to the primary yolk sac in the implanting primate embryo and the establishment of the sec-
ondary yolk sac. Moreover, we propose a rationale for primary yolk sac formation and early
extraembryonic mesoderm specification in primates. We discuss the critical roles of the sec-
ondary yolk sac for haematopoiesis, germ cell development and nutritional transport during
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early primate embryogenesis and conclude by providing an out-
look on the exciting prospect of deriving human and non-human
primate hypoblast cultures to model yolk sac development
in vitro.

Evolutionary origin of the primate yolk sac
Successful reproduction on land required substantial rearrange-
ments of the aquatic egg, in particular with regard to gas
exchange, waste disposal and protection from desiccation2,3. To
accomplish this challenge, amniotes (the clade of reptiles, birds
and mammals) have developed three additional extraembryonic
membranes: amnion, chorion, and allantois3 (Fig. 1). The evo-
lution of amniotic eggs with large yolk-filled sacs, extensive
extraembryonic tissues and less gelatinous shells effectively lib-
erated amniotes from aquatic environments and allowed them to
conquer dryer habitats inland. Strikingly, all extraembryonic
membranes of the amniotic egg, including the yolk sac, are
conserved in viviparous (producing living young) eutherian
mammals.

Viviparity has evolved independently many times across the
animal kingdom4. The evolutionary advantages of viviparity
include protection from predators and pathogens, as well as
effective thermoregulation throughout the seasons3,5. In addition,
nutritional resources can be delivered to the offspring in smaller
quantities, rather than all at once, and viviparous parents are
freed from the demands of tendering immobile eggs4. Although
this mode of reproduction impacts litter size due to limited
available space, viviparity has proven evolutionarily advantageous
to higher vertebrates with longer gestation times.

In most cases, viviparity gradually developed by retention of
the egg in the mother for prolonged periods of time before
hatching until the point at which the egg is kept entirely internal
and the newborn baby emerges. Non-mammalian vertebrates and
one of the four egg-laying mammals, the platypus, rely on
nourishment from yolk rich in vitellogenin during the gestation
period. Genomic comparison with chicken vitellogenin showed
conserved sequences in human, armadillo and dog; however, the
vitellogenin homologues in viviparous species have been degen-
erated by frame-shift mutations and premature stop codons6. In
contrast, the platypus genome contains two VIT genes (VIT1 and
VIT2), where VIT1 is eroded but VIT2 remains functional for an
oviparous mode of reproduction. Major milk resource genes, such
as caseins, appeared before the loss of VIT genes in the common
mammalian ancestor6. This suggests that the emergence of lac-
tation and placentation allowed for the gradual loss of yolk-
dependent nourishment during mammalian evolution6.

An important consideration is that mammalian viviparity
emerged comparatively late and had to be superimposed on the
existing structures of the amniotic egg4. Thus successful adapta-
tion for in utero development required repurposing of extra-
embryonic membranes (Fig. 1). As in reptiles and birds,

mammalian extraembryonic membranes function as surrogate
lung, gut, liver and kidney, long before these organs are formed in
the foetus7. Mammals establish a cooperative network of extra-
embryonic tissues consisting of amnion, chorion, yolk sac and
allantois (Box 1). The amnion is a transparent membrane, which
forms a fluid-filled sac surrounding the embryo. It provides an
aquatic environment for the conceptus to prevent desiccation,
ensures free movement of the foetus and serves as a shock
absorber throughout gestation. While the amnion is an avascular
membrane in most mammals, the yolk sac, allantois and chorion
are highly vascularised to maximise nutrient and gas exchange
between mother and foetus. The yolk sac functions as an
absorptive epithelium for nutrient uptake and secretion as well as
the origin of the first blood cells. In human and non-human
primates, the allantois is a small diverticulum, which is part of the
umbilical cord, connects to the bladder and acts as a temporary
store for foetal excretions. The chorion is formed from extra-
embryonic mesoderm and trophoblast. Depending on the species
and developmental stage, the chorion fuses with either the yolk
sac to form the choriovitelline placenta or the allantois to form
the chorioallantoic placenta. In most mammals, the choriovitel-
line placenta supports the early stages of development, while later
on, the definitive, chorioallantoic placenta takes over to ensure
sufficient nutritional supply during the foetal growth phase.
Notably, there are numerous exceptions, including marsupials,
which predominantly feature choriovitelline placentas, and
rodents, which maintain both placental types throughout
gestation8,9.

The yolk sac is among the first extraembryonic membranes to
develop. In human and non-human primates, the yolk sac never
physically attaches to the chorion in the chorioallantoic pla-
centa10. Instead, it is linked to the embryo via the vitelline duct
and floats freely in the exocoelomic cavity. After the first trime-
ster, when the uteroplacental circulation is established as the
main source for oxygen and metabolite exchange, the yolk sac
degenerates and is often absent at birth11. For this reason, the
yolk sac was once considered a mere remnant of our evolutionary
ancestry. However, in recent years there has been accumulating
evidence suggesting that the yolk sac is the main nutritional
supply line to the embryo prior to the establishment of the
intervillous circulation of the placenta12–16. To understand how
the yolk sac accomplishes its vital functions, we have to go back to
its origin in the preimplantation embryo.

Development of the yolk sac
Establishing the founding population: hypoblast specification
in the primate blastocyst. The mammalian yolk sac is derived
from the hypoblast, an extraembryonic lineage originating from
the early inner cell mass (ICM) of the blastocyst. Rodent models
have provided invaluable mechanistic insights into hypoblast
formation (reviewed in refs. 17–22). However, recent studies

Box 1 | Extraembryonic membranes in human development

Amnion: The innermost extraembryonic membrane consisting of a fluid-filled sac surrounding the embryo. Amnion provides a protective aqueous
environment for the developing foetus.
Yolk sac: Human yolk sac development consists of two developmental phases: Initially, the embryo forms a primary yolk sac, which rapidly collapses
and is replaced by a secondary yolk sac. The secondary yolk sac is the definitive yolk sac. It gives rise to the first blood cells of the embryo and is highly
vascularised. The secondary yolk sac ensures nutritional supply for the early embryo before the chorion is sufficiently developed to perform this
function.
Allantois: An extraembryonic membrane that extends from the yolk sac into the connecting stalk. Together with the yolk sac, it acts as a source for
embryonic blood cells.
Chorion: The outermost extraembryonic membrane derived from the trophoblast of the blastocyst. Together with the allantois, the chorion represents
the foetal component of the placenta and is highly vascularised for gas exchange, waste management and nutrient transport during foetal growth.
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highlight considerable differences in transcriptional regulation
and signalling pathway deployment in human and non-human
primate hypoblast specification23,24.

At a first glance, primate preimplantation development appears
to follow the rodent paradigm, albeit developmentally protracted.
Embryonic genome activation occurs at the eight-cell stage25,26,
instead of the two-cell stage in mouse27. Primate embryos initiate
compaction around the 16–32-cell stage, one cell division later
than the mouse and form an early blastocyst by the 64-cell stage.
Compaction of the morula inaugurates the first lineage decision,
when outer cells give rise to trophoblast and interior cells become
the ICM of the early blastocyst. A distinctive feature of early ICM
cells in rodents is co-expression of the hypoblast specifier Gata6
and the pluripotent epiblast marker Nanog28. The transcriptomes
of individual ICM cells are indistinguishable at the 32-cell stage29;
however, this homogeneity is short lived. Within hours, small
transcriptional changes progressively manifest29,30 and NANOG
and GATA6 protein expression becomes mutually exclusive,
resulting in a “salt and pepper” pattern at the 64-cell stage28,31.
The transcriptional programme for mouse hypoblast specification
involves the sequential upregulation of Gata6, Sox17, Gata4 and
Sox732.

In accordance with the mouse model, primate lineage specifiers
NANOG and GATA6 are initially co-expressed in the early
ICM24,33,34 and resolve into discrete epiblast and hypoblast
populations prior to implantation24,33–35. Comparative transcrip-
tome analysis of human and non-human primate preimplanta-
tion stages showed that sequential activation of GATA6, SOX17
and GATA4 is conserved; however, SOX7 is absent23,24,34,36. Early
primate hypoblast markers—expressed in early ICM and
sustained in hypoblast but downregulated in epiblast—include
GATA6, PDGFRA, TBX3 and HNF4A34,36, while GATA4, SOX17,
HNF1B, APOA1 and OTX2 constitute late markers, upregulated
in the mature primate hypoblast of the late blastocyst34,36.

Mouse hypoblast formation is critically dependent on fibro-
blast growth factor (FGF) signalling, as the emerging hypoblast
population sustains Gata6 expression in response to
FGF4 secreted by Nanog-positive epiblast progenitors17,37–39.
Gata6 is functionally required for hypoblast specification40–42,
but its initial expression is independent of Fgf443,44. Transcrip-
tome analysis showed that FGF receptors Fgfr2, Fgfr3 and Fgfr4
are hypoblast specific, while Fgfr1 is expressed in all cells24,29.
However, both Fgfr1 and Fgfr2 mediate FGF signalling during
hypoblast development and loss of both receptors completely
abolishes hypoblast formation45. In line with the genetic evidence,
pharmacological inhibition of Mek/Erk signalling eliminates
hypoblast formation and promotes epiblast46, while activation
of FGF signalling favours hypoblast development at the expense
of epiblast specification47. Collectively, this demonstrates a

dominant role of FGF signalling in mouse hypoblast lineage
acquisition.

Primate early ICM cells exhibit increased expression of WNT,
transforming growth factor β (TGFβ)/NODAL and bone
morphogenetic protein (BMP) pathway components23,24,34.
RSPO3, a potent WNT signalling enhancer48, is one of the
predominant primate-specific hypoblast markers23,24,36,49,50.
Conversely, marmoset, cynomolgus monkey and human epiblast
cells express WNT ligands, in contrast to the mouse24,34,36.
NODAL, TGFBR1, TGFBR3 and ACVR1B transcription is earlier
and stronger than in the mouse, while FGF4 is delayed in
primates24,36. This divergence in signalling pathway component
expression provides a rationale for the fact that FGF signalling
inhibition does not entirely block hypoblast formation in
human33,51. Comparative embryo inhibitor experiments in
marmoset and mouse showed that blocking of either FGF or
WNT signalling slightly reduced hypoblast cell numbers, while
combined inhibition ablated hypoblast specification24. This
suggests that primate hypoblast specification is regulated by
multiple pathways, including FGF and WNT, in contrast to
mouse, where FGF signalling is the predominant driver for
lineage segregation.

By the late blastocyst stage, the rodent ICM has resolved into
mature epiblast and hypoblast lineages as a result of cell
migration and apoptosis31. Mouse ICM cells progressively lose
developmental plasticity and become irreversibly committed to
either lineage52,53. The hypoblast cells adjacent to the blastocyst
cavity polarise and form an epithelium. This process is assisted by
atypical protein kinase C (Prkci, Prkcz), which is required for
acquisition of apical–basal polarity and, as such, hypoblast
maturation54. Although much less is known about the molecular
and functional characteristics of the late primate hypoblast,
electron micrographs of rhesus embryos show that hypoblast cells
equally consists of a continuous, polarised epithelium55. There-
fore, epithelialisation constitutes the final step of hypoblast
specification in both rodent and primate blastocysts, which are
now ready for implantation.

Primary yolk sac formation at the periimplantation stage.
Embryo implantation is a developmental milestone, where the
embryo undergoes major reorganisation. Extraembryonic tissues
grow rapidly to establish a permanent link to the mother and
secure a steady supply of metabolites and oxygen.

In great apes (human, chimpanzee, gorilla and orangutan) and
lesser apes (gibbon)56, embryos undergo interstitial implantation,
as the late blastocyst penetrates through the epithelial lining of
the endometrium and invades into the underlying connective
tissue. Embryos of other primate species, including Old World

Amnion

Chorion

Allantois

Yolk sac

Fish
500 mya Reptiles and birds

300 mya Mammals
160 mya

Fig. 1 Extraembryonic membranes in fish, birds and mammals. The yolk sac dates back to our aquatic ancestors and thus represents the phylogenetically
oldest extraembryonic tissue. Amnion, chorion and allantois are inventions of the amniotic egg, which have been subsequently adapted in mammals to
support embryonic development inside the uterus. mya million years ago.
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(rhesus and cynomolgus) and New World monkeys (marmoset),
implant superficially, with the blastocyst expanding in the central
cavity of the uterus57. Despite this difference in implantation
mode, yolk sac formation consists of two developmental phases in
probably all primates. In particular, human embryos develop a
primary yolk sac between Carnegie stages (CS) 4 and 5, which is
then replaced by a secondary yolk sac (Fig. 2). The secondary yolk
sac is the definitive yolk sac and supports the conceptus during
the first 2 months of pregnancy.

Primary yolk sac formation begins at the periimplantation
stage at CS 4 (Box 2), when cells of the outer trophoblast layer of
the blastocyst fuse to form syncytiotrophoblast and attach to the
endometrium (Fig. 2). The hypoblast forms a squamous
epithelium covering the epiblast58 and expands beyond the
epiblast margin. At this stage, hypoblast cells diversify into
visceral and parietal endoderm (Fig. 2). Visceral endoderm
overlies the epiblast and gives rise to a cuboidal epithelium. The
peripheral hypoblast cells become parietal endoderm, which
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Fig. 2 Yolk sac formation in primates. Embryonic stages of common marmoset (Callithrix jacchus), rhesus monkey (Macaca mulatta) and human (Homo
sapiens) are depicted in Carnegie stages and embryonic day (E) for each species. The definitive, secondary yolk sac is highlighted in yellow. Drawings are
based on representative histological sections of common marmoset82,83, rhesus81 and human71,72,87,161,162 embryos.
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forms an inner lining of the trophoblast. Both visceral and
parietal endoderm contribute to the primary yolk sac55,59. The
epiblast polarises into a rosette and undergoes cavitation, thereby
segregating into amnion and embryonic disc. At CS 5,
syncytiotrophoblast penetrates deeper into the endometrium
and gives rise to small cavities, termed lacunae. In the meantime,
parietal endoderm further expands and lines the inner cavity of
the trophoblast. This process completes primary yolk sac
formation by the end of CS 5.

Anterior visceral endoderm is essential for embryo patterning.
In mammals, the anterior–posterior body axis is established
through gradients of conserved signalling pathways (reviewed in
refs. 39,60,61). Visceral endoderm plays a critical role in this pro-
cess, as part of it forms a dynamic signalling centre, the anterior
visceral endoderm (AVE). The AVE is specified prior to the
formation of the primitive streak and essential for patterning of
anterior regions in the mammalian conceptus39,60–64.

Most of our knowledge about mammalian gastrulation is
derived from studies in mouse (Fig. 3), where BMP4 signalling
from the extraembryonic ectoderm is pivotal for setting up the
proximal–distal axis65 and required for the generation of PGCs66.
Extraembryonic ectoderm expresses proteases SPC1 (Furin) and
SPC4 (Pace4), which activate NODAL in the epiblast67. At the
border between epiblast and extraembryonic ectoderm, NODAL
re-enforces BMP4 expression, which induces WNT3 in the
proximal epiblast68. At the same time, NODAL expression from
the epiblast specifies the most distal visceral endoderm cells to
secrete NODAL inhibitors CER1 and LEFTY1, as well as WNT
inhibitors DKK1, SFRP1 and SFRP539,61,69. Distal visceral

endoderm cells subsequently migrate towards the prospective
anterior side of the mouse egg cylinder, where they form the
AVE. Signalling pathway inhibition from the AVE restricts
gastrulation towards the opposite side of the AVE, where a
combination of WNT, BMP4 and NODAL induces the key
mesoderm factor T (Brachyury)39,61,70. Primitive streak forma-
tion is initiated at the proximal posterior pole of the epiblast,
where cells undergo epithelial-to-mesenchymal transition and
differentiate into mesoderm and endoderm30 (Fig. 3).

Primate AVE formation is associated with local thickening of
the visceral endoderm. This can be observed in human embryos
as early as CS 5C and 6A71,72 (Fig. 4). Equally, the
anterior–posterior axis is evident in cynomolgus and rhesus
embryos at the same stage (ref. 73 and Fig. 12 in ref. 74). In
cynomolgus, CER1 is initially expressed throughout visceral
endoderm and becomes anteriorly restricted within several
hours73. The cynomolgus AVE secrets DKK1, presumably to
locally inhibit strong WNT3A signalling from the overlying
trophoblast and amnion73. Prior to gastrulation, BMP4 is
expressed in the amnion and subsequently shifts towards the
posterior end of the embryonic disc73. Moreover, there is robust
experimental evidence for a conserved function of FGF, BMP and
WNT signalling in pluripotent stem cells (PSCs). Human PSCs
correspond to the postimplantation epiblast34 and efficiently
differentiate into mesoderm and endoderm upon coordinated
pathway stimulation mimicking the posterior signalling
environment75,76. In the mouse, definitive endoderm gradually
intercalates with visceral endoderm, although a fraction of
extraembryonic cells persists at least until the formation of the
early gut tube77. The dynamics of visceral endoderm replacement

Box 2 | Chronology of human embryogenesis in Carnegie stages

Developmental timing is indicated in embryonic days (E).
Carnegie stages (CS) in human:
CS 1 (E1): Fertilisation resulting in the formation of a unicellular embryo, the zygote.
CS 2 (E2–4): Cleavage divisions leading to morula formation.
CS 3 (E5–6): Blastocyst development and hatching from zona pellucida.
CS 4 (E7): Apposition and initial attachment of the blastocyst to the endometrium. Polarisation of the pluripotent epiblast.
CS 5A (E8): Epiblast segregates into amnion and the pluripotent embryonic disc. Syncytiotrophoblast formation and invasion of the endometrium.
CS 5B (E9–10): Expansion of the amniotic cavity. In the syncytiotrophoblast, small gaps appear, termed lacunae.
CS 5C (E11–12): Continuous lacunae formation leads to a nearly complete sphere; extraembryonic mesoderm begins to intrude into prospective primary
chorionic villi.
CS 6A (E13): Initiation of gastrulation in the embryonic disc and primary chorionic villi formation.
CS 6B (E14–15): Primitive streak becomes clearly visible.
CS 7 (E16–19): Formation of the notochord and initiation of haematopoiesis in the yolk sac.
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Fig. 3 Early postimplantation development in mouse. Embryonic stages are depicted according to Carnegie stages and embryonic day (E)39,60,61,163.
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by definitive endoderm in the primate embryo remain unknown
and will provide an exciting avenue for further studies.

The origin of extraembryonic mesoderm in primates. Early
extraembryonic mesoderm specification prior to primitive streak
formation is a characteristic feature of primate
embryogenesis78,79 (Fig. 2). This contrasts with rodent develop-
ment, where extraembryonic mesoderm originates from the first
epiblast cells migrating through the primitive streak61,80 (Fig. 3).
In the human embryo, the early appearance of spindle-shaped
cells between the endoderm of the primary yolk sac and tro-
phoblast has been considered mesoderm71 or epithelial strands of
parietal endoderm origin74. This mesh-like array is more pro-
nounced in human and chimpanzee embryos compared to rhe-
sus81 and marmoset82,83, which may be causally related to the
mode of interstitial implantation74. In great apes, blastocyst
expansion is reduced to allow penetration through the endo-
metrial epithelium, but the parietal endoderm of the primary yolk
sac continues to grow during this period at the same rate as in
monkeys74. It has been suggested that the extensive growth of
mesenchymal cells within the blastocyst cavity may play a
structural role in the re-expansion of the conceptus after pene-
tration into the maternal endometrium74.

The developmental origin of extraembryonic mesoderm is
unclear. It initially appears in the periimplantation embryo at CS
4 and thus can theoretically be specified from three possible
sources: trophoblast, hypoblast, or epiblast. Originally, extraem-
bryonic mesoderm in early human implantation stages was
suggested to be derived from the inner layer of trophoblast, the
cytotrophoblast81,84. However, subsequent ultrastructural studies
have shown that cytotrophoblast and early extraembryonic
mesoderm are physically separated by a basal lamina in rhesus79

and human85. Together with the consistent absence of histolo-
gical evidence of mesodermal progenitors delaminating from
cytotrophoblast in the literature, a cytotrophoblast origin is now
regarded as unlikely79,86.

Human and non-human primate extraembryonic mesoderm is
continuous with, and morphologically indistinguishable from,
endodermal cells lining the central cavity of the primary yolk
sac34,87. Indeed, evidence from rhesus and cynomolgus embryos
points towards an origin from the hypoblast lineage34,79.
Histological and ultrastructural studies by Enders and colleagues
show that visceral and parietal endoderm cells of the primary yolk
sac delaminate, invade the space between primary yolk sac and
cytotrophoblast and differentiate into extraembryonic
mesoderm34,79,86. Importantly, this hypoblast origin model is
supported by electron micrographs of transition stages, where
differentiating cells extend towards the underlying basal lamina of

the cytotrophoblast, while still attached to parietal endoderm79.
The invading cells lose apical microvilli and junctional complexes,
indicative of epithelial-to-mesenchymal transition. Furthermore,
cells in this transition stage show electron-dense bodies within the
endoplasmic reticulum cisternae, which constitutes an ultra-
structural feature characteristic of extraembryonic mesoderm of
later stages79. Recent studies support this model, as molecular
analysis in cynomolgus embryos revealed in situ expression of
endoderm markers GATA4 and GATA6 in early extraembryonic
mesoderm cells34,88,89. The extraembryonic mesoderm produces
large amounts of extracellular matrix, in particular Fibronectin
(FN1), Collagen (COL1A1, COL1A2, COL3A1, COL4A1, COL6A1
and COL6A3) and Laminin111 (LAMA1, LAMB1 and LAMC1)34.
By CS 6, these matrix proteins accumulate around the embryonic
stalk region, which connects embryo and placenta34,79. Notably,
single-cell transcriptome analysis of GATA4- and GATA6-
positive extraembryonic mesoderm cells showed absence of the
mesodermal marker T (also known as Brachyury)34. This is in
contrast to rodent extraembryonic mesoderm, which is derived
from T-positive epiblast cells in the proximal region of the
primitive streak80,90,91. It is tempting to speculate that the
epithelial-to-mesenchymal transition in the context of primate
extraembryonic mesoderm specification from hypoblast is
mediated by a distinct transcriptional circuitry, but functional
studies and further embryo profiling data will be required to
corroborate or refute this hypothesis.

However, there is a third possible origin of extraembryonic
mesoderm. Luckett argues that the posterior margin of the
primitive streak of the epiblast develops precociously at CS 5C
and early 6, which he considers as the source of all
extraembryonic mesoderm74. While this hypothesis has been
dismissed in the literature86 on the grounds that extraembryonic
mesoderm is already abundantly present prior to primitive streak
formation, it is worth taking a closer look at Luckett’s suggestion
(Fig. 4). Indeed, there is histological evidence of an
anterior–posterior embryonic axis in human embryos as early
as CS 5C. The pronounced thickening of both epiblast and
presumptive AVE on one side of the embryonic disc indicates
accomplished embryo patterning (Carnegie #8558, #7950 and
#8330 in ref. 71 and Carnegie #7700 in ref. 87). One of these CS 5C
specimens even exhibits a pronounced curved shape with
precocious delamination of mesoderm at the thinner end of the
embryonic disc (#8330,71 depicted in Fig. 4). Equally, serial
sections of rhesus embryos demonstrate consistent thickening on
one side of the embryonic disc in all of the five samples collected
at CS 5C81. From an evolutionary point of view, an epiblast origin
of extraembryonic mesoderm formation would be consistent with
rodents and a multitude of other species.

Carnegie stage 5A/B
E9 (#8215, Section 12-5-2)

Carnegie stage 5C
E11 (#7699, Section 8-5-3)

×200×400

Primary
  yolk sac

Primary yolk sac

Extraembryonic
mesoderm

×120

Carnegie stage 6
E14 (#7801, Section 12-1-4)

Secondary
yolk sac

Vesicle

Extraembryonic
mesoderm

EpiblastAmnion

Lacuna

Uterine cavity

Fig. 4 Histology of early implantation stages in human. Embryonic stages are depicted according to Carnegie stage and embryonic day (E) with the
Carnegie specimen and section ID indicated. Images are reproduced from ref. 74. Original annotations have been removed using the Adobe Photoshop Spot
Healing Tool.
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So how can this apparently contradictory evidence be
reconciled? We hypothesise that the primary yolk sac serves as
a source for extraembryonic mesoderm, ultimately providing an
inner mesodermal lining within the former blastocyst cavity
(Fig. 2). It is conceivable that the earliest extraembryonic
mesoderm originates from hypoblast and is then “supplemented”
with mesoderm from the embryonic disc. This hypothesis is
consistent with the fact that extraembryonic mesoderm on the
abembryonal site (opposite the embryo proper) is already
abundantly present at CS 5C and 6 (Fig. 4) and thus unlikely
to be derived from precocious gastrulation in the embryonic disc.
In great apes, primary yolk sac formation might also provide
structural support for the re-expansion of the conceptus after
interstitial implantation. Once this is achieved, the primary yolk
sac collapses into smaller vesicles, which either differentiate or
perish in the former blastocyst cavity, now called the exocoelomic
cavity. The mesodermal lining of the cytotrophoblast establishes
the chorion, which will undergo primary chorionic villus
formation in subsequent stages. Deconstruction of the primary
yolk sac paves the way for the next chapter of yolk sac
development, with the establishment of its successor, the
secondary yolk sac.

Emergence of the secondary yolk sac. Secondary yolk sac for-
mation is a unique feature of primate embryogenesis. Most
human specimens at CS 6 exhibit a small secondary yolk sac
beneath the embryonic disc, concomitant with multiple vesicles
elsewhere in the blastocyst cavity, in particular the abembryonic
regions (Fig. 2). This wide variation in structure has led to the
concept of primary yolk sac collapse or suggestions that the
secondary yolk sac may form by pinching off from the larger
primary yolk sac74. Alternatively, the swollen spherical nature of
the primary yolk sac at CS 5C and 6 might result from turgor. In
this case, histological variance could be explained by periodic
collapse and re-expansion, a phenomenon commonly observed in
the primate blastocyst92. The parietal endoderm of the primary
yolk sac continues to delaminate extraembryonic mesoderm,
while undergoing constant rearrangement resulting in the for-
mation of smaller vesicles. In contrast to the thin and elongated
cells of the parietal endoderm and extraembryonic mesoderm,
visceral endoderm is densely packed with nuclei, indicating
growth and expansion. Therefore, the human secondary yolk sac
may be derived from visceral endoderm and potentially smaller
fragments of the parietal endoderm of the primary yolk sac92.

The concept of secondary yolk sac formation from visceral
endoderm is supported from data in New World and Old World
monkeys, where blastocysts grow larger compared to great apes
and implant superficially. The extensive mesh-like network of
extraembryonic mesoderm observed in the primary yolk sac of
great apes is reduced to a layer of elongated and spikey parietal
endoderm cells in marmoset and cynomolgus34,82,83. Visceral
endoderm cells at CS 5 and 6 are positive for the proliferation
marker Ki6773 and form an irregular layer of one to three cells
beneath the embryonic disc34,55. Detailed molecular characterisa-
tion in cynomolgus implantation stages revealed that SOX17-
positive visceral endoderm is continuous with the spindle-shaped
cells of the primary yolk sac but often folds back at the margins of
the embryonic disc (Fig. 2 in ref. 73). This leads to the emergence
of a small cleft within the visceral endoderm, which sustains
specific visceral endoderm marker expression, including SOX17
and FOXA134,73. In contrast, SOX17- and FOXA1-negative
parietal endoderm accumulates around the amnion and stalk
regions and appears to differentiate into COL6A1-secreting
extraembryonic mesoderm34. Both extraembryonic mesoderm
and visceral endoderm express GATA4 and GATA6, consistent

with their common endoderm origin34. However, further studies
using lineage tracing or spatial transcriptomics in non-human
primates will be required to unequivocally clarify the mechanisms
of secondary yolk sac formation.

Functions of the secondary yolk sac in primate
embryogenesis
Haematopoiesis in the yolk sac. Throughout mammalian
development, haematopoiesis occurs in three transient waves
before haematopoietic stem cells are permanently established in
the bone marrow. The first human blood cells are large and
nucleated erythrocytes, macrophages and megakaryocytes, which
originate in the blood islands of the yolk sac from CS 7 onwards
(Fig. 5a)93–95.

Blood formation is initiated in yolk sac mesoderm of either
embryonic or extraembryonic origin, which aggregates into small
masses. These condensations of extraembryonic mesoderm have
been postulated to be the primordia of blood islands96, which
differentiate to form two types of angioblasts: (i) endothelial
progenitors, which give rise to constituents of the blood vessels,
and (ii) primitive haematopoietic progenitors, encompassing
erythroid and myeloid progenitor cells97–99. Most blood islands
are comprised of haematopoietic cells surrounded by endothelial
cells and rapidly develop into an extensive vascular plexus, which
envelopes the yolk sac in a sophisticated branching-like pattern.
In the mouse, the first primitive erythroid progenitors are
considered bipotent, giving rise to unipotent megakaryocytes and
erythroid progenitors100. The initiation of cardiac contractions
marks the onset of the embryo—vitelline circulation, as yolk sac-
derived haematopoietic cells are disseminated throughout the
developing embryo101. Consequently, primate and rodent
primitive erythrocytes can be readily found inside the cardiac
cavity102,103. The first wave of haematopoiesis in the yolk sac is
rapidly followed by the second wave, generating erythro-myeloid
progenitors and lymphoid progenitors, which transiently seed the
foetal liver104–106. At the sixth week of human gestation,
primitive erythroblasts are found in embryonic and extraem-
bryonic blood vessels, followed by an overall decline of
haematopoiesis in the yolk sac from the eighth week107.
Intraembryonic haematopoietic stem cells arise in the major
arteries of the developing embryo through a third and final wave
of haematopoiesis101,108. Towards the end of gestation, blood cell
production has translocated to the bone marrow, which becomes
the permanent site for haematopoiesis throughout adulthood in
mice and humans99,101.

A central question is whether the first blood cells in the primate
yolk sac originate from epiblast- or hypoblast-derived extraem-
bryonic mesoderm. Mouse blood island formation appears to be
regulated by conserved signalling cascades, including FGF, BMP,
TGFβ and WNT pathways, as well as paracrine crosstalk between
yolk sac endoderm and the overlying mesoderm101,108. Interest-
ingly, mouse yolk sac derived erythro-myeloid progenitors persist
into adulthood as a common origin for tissue macrophages109.
Evidence from human PSCs suggests that mesoderm destined to a
haematopoietic fate is marked by primitive streak genes T
(Brachyury),MIXL1 and FOXF1, as well as surface receptors KDR
and PDGFRA110. Efficient generation of primitive haematopoietic
cells in vitro from nascent mesoderm requires ACTIVIN and
BMP signalling111 but does not yield long-term haematopoietic
stem cells. Conversely, ACTIVIN inhibition112 or WNT
stimulation113,114 of mesoderm progenitors shifts the balance
towards definitive haematopoietic lineages, as defined by the
capacity to generate T-lymphocytes112,113. The fact that primitive
and definitive haematopoietic cells can be efficiently derived from
human PSCs supports the notion that epiblast-derived
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mesoderm, at least partially, contributes to yolk sac mesoderm
and the first wave of haematopoiesis. Currently, there are no
in vitro models for primate hypoblast or hypoblast-derived
extraembryonic mesoderm. Further studies and lineage tracing
experiments will be required to determine the precise origin of

haematopoiesis in primates. While the molecular mechanisms of
primary haematopoiesis remain poorly understood, it is clear that
the intricate vascular system of the yolk sac plays an indispensable
role in transporting nutrients throughout the early stages of
gestation. As embryonic development progresses towards
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organogenesis, the establishment of a complex vascular system is
imperative for growth, delivery of nutrients and survival of the
conceptus.

A primordial germ cell vacation in the yolk sac. More than 100
years ago, human primordial germ cells (PGCs) were initially
discovered in the yolk sac115. PGCs are the founder cells of sperm
and egg, which harbour the unique ability to generate a totipotent
zygote at fertilisation. The curious fact that PGCs vacate the
embryo during the fourth and fifth week of gestation and migrate
into the yolk sac shall be the focus of this section.

In rodents, the epiblast acquires uniform competence for the
germ cell fate prior to gastrulation; however, the capacity to form
germ cells is swiftly confined to the proximal posterior region116.
Inductive signalling through BMP4 from extraembryonic ecto-
derm, BMP2 from visceral endoderm and WNT3 from the
epiblast are crucial in specifying a cluster of approximately 40
PGCs. The earliest molecular markers include Prdm1 (Blimp1),
Prdm14 and Tfap2c (Ap2γ)117–119. Mouse PGCs traverse the
primitive streak and allantois towards the hindgut120 and
undergo genome-wide epigenetic reprogramming, which encom-
passes X-chromosome reactivation, DNA demethylation and
erasure of genomic imprints121–123. Their pilgrimage ends in the
genital ridges, where germ cells undergo sex-specific maturation
in the developing gonads.

PGCs in human and non-human primates were previously
considered to originate in the posterior epiblast prior to
gastrulation. However, recent evidence in cynomolgus embryos
at implantation stages points towards the nascent amnion as a
source of germ cells73. Primate embryos exhibit a planar,
bilaminar structure during the pre-gastrulation period, in contrast
to the cup-shaped egg cylinder in rodents. Upon implantation,
the primate epiblast segregates amnion and generates the
amniotic cavity (Fig. 2). For cynomolgus PGC specification,
BMP and WNT signals from the amnion and surrounding
cytotrophoblast induce T expression in cells of the dorsal amnion,
followed by upregulation of SOX17, PRDM1 (BLIMP1) and
TFAP2C73. However, the proposed amnion model for PGC
formation is not observed in bilaminar embryos of other
mammalian species. For instance, porcine PGCs are specified in
the posterior embryonic disc through autocrine signals from the
epiblast at the early primitive streak stage124. Equally, in humans,
the epiblast is the likely source of PGCs as suggested by in vitro
models of PGC induction from human PSCs124,125. Conceivable
explanations for a difference between human and Old World
monkey germ cell specification have been proposed, including the
possibility of human amnion segregation prior to PGC formation
or a “dual origin” for PGCs from both amnion and posterior
epiblast126.

After induction, primate PGCs expand in numbers and enter
the yolk sac during gastrulation (Fig. 5). In pre-somite
cynomolgus embryos at CS 8, the majority of PGCs reside within
the posterior yolk sac at the base of the connecting stalk and the
incipient allantois73. Importantly, the formation of the primitive
gut by lateral folding of the endoderm lining of the yolk sac
provides an effective mechanism for PGCs to re-enter the embryo
in a central location. Primate PGCs then translocate from within
the hindgut into the dorsal mesentery (Fig. 5b) by disrupting the
basal membrane of the epithelial lining127. Once in the dorsal
mesentery, their migration path at the centre of the embryo
bifurcates towards the developing gonadal ridges128,129. Recent
evidence from marmoset embryos has challenged the dogma of
active long-range PGC migration, as marmoset PGCs reside in
close spatial proximity to the prospective genital ridge130. This
may suggest “passive translocation” as an important mechanism

for primate PGCs to reach their final destination in the
developing gonads. At the fifth week of human development,
PGCs settle in the genital ridge where subsequent differentiation
and patterning of the gonads occurs, dependent upon the
karyotype128,129.

Collectively, an overarching principle of mammalian germ cell
specification emerges, where PGCs are specified at the onset of
gastrulation and subsequently moved out of the embryo to escape
from somatic signalling bombardment. We hypothesise that the
posterior yolk sac provides a respite for nascent PGCs to
consolidate the germ cell gene regulatory network and accomplish
epigenetic reprogramming in preparation for totipotency. More-
over, the movement of the yolk sac during primitive gut
formation serves as an effective means of transportation for
PGCs to return back into the embryo and to re-enter in close
proximity to the gonadal ridges. The central location of the
developing gonads is vital for protection and temperature
homoeostasis of mature germ cells in the adult, hence the ability
of the yolk sac to deliver PGCs through the hindgut is of
fundamental importance. We propose that the yolk sac plays a
central role in primate PGC development, acting as both safe
harbour and delivery vehicle for the founding cells of the next
generation.

The yolk sac orchestrates histotrophic nutrient transport and
metabolism. An efficient and uninterrupted supply of nutrients
for the conceptus is a core requirement for successful reproduc-
tion. From an evolutionary perspective, the machinery for protein
and nutrient transport was already present in the glandular ovi-
duct of our oviparous ancestors, an organ originally responsible
for albumin production of the egg. After loss of the calcareous
shell, the corpus luteum was recruited to maintain high proges-
terone levels131. This was an essential step to sustain pregnancy
and establish histotrophic nutrition through continuous nutrient-
rich secretions from the maternal glands10,131. Histotrophic
nutrition covers the critical time window between fertilisation
and the onset of placental function, when a permanent interface
between maternal and foetal circulations for gas, nutrient and
waste exchange is established in the placental villi. The progres-
sion from histotrophic to haemotrophic nutrient uptake is
observed in most mammals and marks the end of the first tri-
mester in the human10,131.

Histotrophic nutrition is considered the principal nutritional
pathway in the first 2 months of human and non-human primate
development. The fluid of the exocoelom plays a crucial role in
this process by providing a connection between the maternal
tissues and the embryo. Although the syncytiotrophoblast of the
early placenta efficiently takes up nutrients from uterine
secretions and shuttles them into the exocoelomic fluid, it is
fundamentally limited with regard to transport capabilities
beyond the exocoelomic cavity. Most placental villi are barely
vascularised in the first weeks of postimplantation
development71,131. In contrast, the secondary yolk sac is the first
site of haematopoiesis and as such its vasculature is well
developed99. It is firmly linked to the embryo via the vitelline
duct and floats freely in the exocoelomic cavity, bathed in viscous
and protein-rich exocoelomic fluid12,132. Consequently, the
vitelline circulation in the yolk sac provides an effective
mechanism for metabolite exchange between the uterus and the
developing embryo15,16,133.

There are two principal routes for nutrient delivery to the
embryo via the yolk sac. The first route is through the blood
vessels in the yolk sac wall; the second route is via the yolk sac
cavity, which can be regarded as an expansion of the primitive
gut. In both cases, metabolites from the exocoelomic fluid are first
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absorbed by the outer surface layer of mesoderm surrounding the
yolk sac, the mesothelium. Metabolites are then shuttled either
into the vitelline circulation or the yolk sac cavity. The tissue
architecture of the primate yolk sac is especially suited for
transport functions. It comprises three layers, an outer mesothe-
lium facing the exocoelomic cavity, a highly vascularised
mesenchymal layer in the middle and an inner endodermal
epithelium towards the yolk sac cavity134. Both the inner
endoderm as well as the outer mesothelium display ultrastruc-
tural features of an absorptive epithelium, including extensive
microvilli, coated pits, glycogen and pinocytotic vesicles55,135–137.
The absorptive function of endoderm and mesothelium has been
demonstrated with peroxidase-uptake assays, which suggest
bidirectional nutrient transport in the primate yolk sac138. In
human, the endoderm expands into a stratified epithelium and
forms vessels from the sixth week of gestation (Fig. 5a)137. The
function of these endodermal tubules remains unknown, but it is
tempting to speculate that this network of capillaries further
supports the delivery of metabolites.

Nutrient uptake in the yolk sac involves tight regulation of
receptor-mediated endocytosis and lysosomal degradation
(Fig. 5c), followed by protein synthesis, repackaging and finally
exocytosis (Fig. 5d)55,137,139. Cathepsins are a small group of
protease enzymes found in the low pH environment of
lysosomes140. The presence of transcripts for Cathepsins (CTSB,
CTSD and CTSZ)12,141 indicates conserved proteolytic activity in
the chicken, mouse and human yolk sac. Moreover, the human
yolk sac epithelium expresses a wide spectrum of solute carrier
(SLC) family transporters to shuttle amino acids, glycose,
vitamins, nucleoside sugars and ions from the exocoelomic cavity
into the yolk sac cavity12. Elevated levels of the retinol (vitamin
A) transporter transthyretin (TTR) supports the notion of active
transport of retinol, which is essential for eye development,
retinoic acid synthesis and signalling throughout embryogen-
esis142–145. In addition, mouse and human yolk sac express
abundant levels of metal transporters for zinc, iron, folate and
vitamins B12, C and E12.

Among the most prominent features of the human yolk sac
transcriptome are genes associated with cholesterol and lipid
metabolism. Cholesterol is required for cell membrane integ-
rity146, propagation of signalling pathways147 and as a precursor
for steroid hormones. Importantly, cholesterol is also essential for
the activity of sonic hedgehog proteins148,149, which play a focal
role in neural development and organogenesis150. Shortage or
complete absence of cholesterol results in severe birth defects,
including holoprosencephaly, heart defects and mental
retardation15,148. In the human yolk sac, cholesterol uptake
occurs via lipoprotein receptors CUBN (Cubilin), LRP2 (Megalin)
and LDLR15,151. After endocytosis, lipids are shuttled into the
vitelline circulation via the cholesterol efflux transporter ABCA1
and lipoprotein complexes containing apolipoproteins12. These
hydrophobic vesicles are predominantly found in the blood
stream, where they effectively deliver cholesteryl esters, triglycer-
ides and essential fatty acids to all parts of the body. In the adult,
apolipoproteins are synthesised and secreted by the liver and
intestines. However, prior to the development of the foetal liver,
the yolk sac epithelium is the primary site of apolipoprotein
synthesis (Fig. 5d). The abundant expression of APOA1, APOA4,
APOB, APOE and APOC3 in chick, mouse and human yolk sacs
points towards an evolutionary conserved function for cholesterol
transport and lipid metabolism12,15.

Taken together, the primate yolk sac can be considered a
pivotal mediator of histotrophic nutrition during the first weeks
of embryonic development. It acts as an upgraded extension of
the embryonic gut, evolved to take on endocrine and liver-specific
functions during organogenesis. The yolk sac ensures efficient

nutrient uptake, provides the molecular framework for metabo-
lism and orchestrates the distribution of metabolites to the
developing embryo.

Conclusions and future outlook
A famous quotation notes that “the embryo is a machine that
needs to function while it is being built”81. Moreover, embryonic
development must ensue in water, as mammalian cell survival
strictly depends on an aqueous environment. Extraembryonic
membranes accomplish these challenges by providing nutrient
transfer, gas exchange and waste management as well as an
“aquarium” for the developing conceptus. In primates, the yolk
sac constitutes an essential auxiliary device to process and deliver
maternal nutrients to the embryo, long before foetal organs and
the placenta are sufficiently matured to take on their later func-
tions (Fig. 6). The visceral endoderm has maintained its intricate
relationship with the formative cells of the embryonic disc to
pattern the anterior–posterior axis. In addition, the hypoblast
lineage has adapted to produce extraembryonic mesoderm to
cater for the individual modes of primate implantation. The
human yolk sac reaches its prime in the first 2 months of
gestation, when it gives rise to the first haematopoietic cells and
establishes the vitelline circulation, provides shelter for newly
specified germ cells and nourishes the rapidly growing embryo
(Fig. 6). With the groundwork in place, the yolk sac has fulfilled
its function and degenerates. At the end of the first trimester, the
human placenta is adequately developed for haemochorial
nutrition and the somatic lineages are specified. Organogenesis is
now completed and the embryo is ready to enter the foetal growth
phase of development.

Many aspects of primate yolk sac formation remain elusive.
While embryo profiling in multiple species23,34,36,50 revealed an
imperative role for WNT signalling in primate hypoblast speci-
fication24 and the recent generation of naive extraembryonic
endoderm from human PSCs provides an exciting avenue152, no
embryo-derived hypoblast cell lines have been established so far.
The quest for the derivation of authentic human and non-human
primate hypoblast cells, corresponding transcriptionally and
functionally to the in vivo hypoblast, is ongoing and will provide
crucial insights into the signalling cascades regulating yolk sac
development. Furthermore, hypoblast cell lines will be an effective
tool to functionally interrogate the underlying molecular circuitry
and constitute the final missing building block to model primate
embryogenesis with synthetic embryos. Recent advances in the
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early primate development.
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field of synthetic embryology153–157 and protocols to culture
human158,159 and non-human primate embryos88,89 to post-
implantation stages may shine light on the enigmatic primary to
secondary yolk sac transition, including extraembryonic meso-
derm formation. Nevertheless, non-human primate in vivo stu-
dies remain imperative to determine transcriptional and
epigenetic signatures for thorough assessment of in vitro models.
The exciting prospect of extraembryonic organoid cultures160

might provide a physiological platform to study yolk sac-specific
functions in human, including nutrient uptake, vasculogenesis
and haematopoiesis. The latter will be particular revealing if
combined with embryonic or extraembryonic mesoderm or both.
Ultimately, a deeper knowledge of yolk sac development and its
complex functions will be imperative to deconvolute the forma-
tion of our most ancient extraembryonic organ.
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