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Abstract
Segmentation is an important process that is frequently used during
development to segregate groups of cells with distinct features. Seg-
mental compartments provide a mechanism for generating and orga-
nizing regional properties along an embryonic axis and within tissues.
In vertebrates the development of two major systems, the hindbrain
and the paraxial mesoderm, displays overt signs of compartmentaliza-
tion and depends on the process of segmentation for their functional
organization. The hindbrain plays a key role in regulating head de-
velopment, and it is a complex coordination center for motor activ-
ity, breathing rhythms, and many unconscious functions. The paraxial
mesoderm generates somites, which give rise to the axial skeleton. The
cellular processes of segmentation in these two systems depend on or-
dered patterns of Hox gene expression as a mechanism for generating a
combinatorial code that specifies unique identities of the segments and
their derivatives. In this review, we compare and contrast the signaling
inputs and transcriptional mechanisms by which Hox gene regulatory
networks are established during segmentation in these two different
systems.
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Hox genes: a highly
conserved family of
homeodomain
transcription factors
that regulate axial
information

INTRODUCTION

Hox genes are a large family of related genes
that encode helix-turn-helix transcription
factors. In many animal species, this gene
family plays an important role in regulating
the specification of positional identities of
tissues along the anterior-posterior (A-P)
axis during development (Carroll 1995,
Krumlauf 1994, McGinnis & Krumlauf
1992). In most vertebrates, excluding fish,
there are 39 Hox genes organized into four
separate chromosomal clusters (Figure 1).
Within each cluster, all genes have the same
orientation with respect to transcription. These

clusters arose by duplication and divergence
from a common ancestral complex; and on
the basis of similarities, in both the sequence
and position of genes in the complexes, it is
possible to identify 13 paralogous groups (PG)
(Figure 1c). A hallmark of clustered Hox genes
is the direct correlation between their linear
arrangement along the chromosome, and the
timing and A-P boundaries of their expression
during early development (Duboule & Dollé
1989, Graham et al. 1989, Lewis 1978). This
property is termed colinearity and results in the
establishment of ordered domains of expres-
sion that provide a combinatorial Hox code for
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Figure 1
The mammalian Hox cluster. (a) Depiction of a segmented vertebrate hindbrain displaying the rhombomeres and their associated
cranial motor nerves. For clarity the cranial ganglia are displayed on only one side of the segmented hindbrain. Shown are the five most
obvious ganglia (Vg-Xg) through which the motor and sensory nerves pass. (b) A 9.5 dpc mouse embryo illustrating the hindbrain and
somites. Other features include the developing eye (E), otic vesicle (OV), branchial arches (BA1, BA2), forelimb (FL) and presomitic
mesoderm (PSM). (c) Hox genes in the mammal are organized into four clusters (Hoxa, Hoxb, Hoxc, and Hoxd ) that are arrayed on
separate chromosomes. Within each cluster, the Hox genes are arranged in a linear order that reflects their initiation and placement of
their anterior border of expression. Thus, members of the first paralogous group (Hoxa1, Hoxb1, and Hoxd1) are generally expressed
first and have the most anterior border of expression, whereas members of the thirteenth paralogous group (Hoxa13, Hoxb13, Hoxc13,
and Hoxd13) are expressed last and have the anterior borders of expression in the most posterior regions. (d ) Hox gene expression in the
9.5 dpc mouse hindbrain. The borders of expression domains colocalize with rhombomeric boundaries. Higher domains of expression
are indicated by darker shading domains, and members within a paralogous group are displayed in the same color. (e) Hox gene
expression in the developing somitic column of the vertebrate embryo. For illustrative purposes, only Hox genes from the Hoxb complex
are shown. For some Hoxb members, their mRNA distribution along the A-P axis varies and is shown as a gradient. As within the
developing hindbrain, the staggered arrangement of their anterior borders within somites is a property of their physical ordering along
the chromosome; this phenomenon is known as colinearity.

specifying distinct regional properties along
embryonic axes (Kmita & Duboule 2003).
Within vertebrate species alone, the products
of the Hox genes are used to impart A-P po-
sitional identity within the paraxial mesoderm,
lateral plate mesoderm, neuroectoderm, neural
crest, and endoderm. Major signaling pathways,

such as fibroblast growth factor (Fgf ), retinoic
acid (RA), and Wnt, play important roles in
establishing the Hox codes in these different
developmental contexts. Subsequently, the Hox
code is redeployed to provide patterning infor-
mation to the developing limbs and urogenital
system.
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Hindbrain: region of
the brain that
coordinates motor
activity, breathing
rhythms, and many
unconscious functions

Rhombomeres:
segmental
compartments in the
hindbrain
(rhombencephalon)
that control neural
organization and
architecture

Somites: epithelial
blocks of mesodermal
cells that give rise to
vertebrae and ribs,
dermis of the skin, and
skeletal muscles of the
body wall and limbs

Hindbrain rhombomeres and trunk somites
are transient, serially homologous structures
that are critical for organizing many later de-
velopmental processes. The segments of the
paraxial mesoderm (somites) are formed in a
reiterative progression, concomitant with the
laying down of the body axis, whereas the rhom-
bomeres form within the pre-existing neural
tube. These repeating units are then modified
by segment-specific Hox activity. Patterning
of both systems involves coordination between
morphological segmentation and the genera-
tion of unique profiles of Hox gene expres-
sion within each segment (Galis 1999, Kessel
& Gruss 1991, Lumsden 2004, Lumsden &
Krumlauf 1996). In turn, differential Hox func-
tion between segments underlies the institution
of segment-specific developmental programs
that regulate the identity of these segments
and their derivatives. Thus, differential Hox ac-
tivity creates regional diversity from repeated
units.

Whereas Hox expression in both the hind-
brain and the paraxial mesoderm must be co-
ordinated with morphological segmentation,
the genesis of the segments in each system is
quite distinct. It is postulated that segmenta-
tion has arisen independently many times dur-
ing evolution, suggesting that there are proba-
bly important differences in the molecular and
cellular pathways that govern segmentation in
different contexts. For example, Fgf, RA, and
Wnt signaling pathways play important roles
in these segmental processes but, due to differ-
ences in timing and levels of expression, these
signaling cascades generate distinct outcomes.
Despite these differences, one common theme
appears to be that ordered expression of Hox
genes is coupled to specification of segmental
identity. Therefore, building a picture of the
regulatory networks that establish and main-
tain the coordinated patterns of Hox expression
and function provides an opportunity to com-
pare and contrast patterning and morphogen-
esis in the hindbrain and axial skeleton. This
review provides an overview of how segments
form, and what is known about the upstream

factors and signals that govern the establish-
ment of the Hox cascade in the vertebrate hind-
brain and paraxial mesoderm. In light of the
conserved nature of these processes, extrapola-
tion of data from a variety of vertebrate systems
has been used to generate a working model of
events.

HOX GENES AND HINDBRAIN
SEGMENTATION

Hindbrain Segmentation

Segmentation in the hindbrain (rhomben-
cephalon) is a progressive process that occurs
over a fairly short period of time to divide the
future hindbrain territory into discrete units.
Initially, the hindbrain appears as a smooth,
featureless sheet of cells, which then undergoes
a period of transient compartmentation into
seven segments known as rhombomeres (r)
(Lumsden 2004, Lumsden & Krumlauf 1996,
Moens & Prince 2002). Rhombomeres repre-
sent lineage-restricted cellular compartments
formed by cell segregation. Cell sorting
between rhombomeres is regulated by the
Eph/ephrin bidirectional signaling pathway
(Mellitzer et al. 2000). The Eph receptors and
their membrane-bound ligands, the ephrins, are
expressed in complementary rhombomeres;
receptors are expressed in r3 and r5, whereas
their ligands are expressed in r2, r4, and r6. This
establishes alternating differences in adhesion
and repulsion that repeat with a two-segment
periodicity and leads to sorting between
adjacent cell populations (Mellitzer et al. 1999,
Xu et al. 1999). This differential sorting mech-
anism creates segregated groups of cells that
respond to local signals and adopt distinct char-
acteristics. Understanding the molecular basis
for establishing both the two-segment period-
icity and alternating pattern of cell properties,
behaviors, and patterns of gene expression in
hindbrain segmentation is critically important
for building an accurate picture of regulatory
networks that control segmentation in this
context.
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Hindbrain Segmentation
and Head Development

Although the physical separation of the hind-
brain into seven rhombomeric segments is
transitory, this early organization plays a fun-
damental role in head development and in
maintaining the neural architecture in post-
segmental and adult stages of development
(Pasqualetti et al. 2007, Wingate & Lumsden
1996). A major component of the bone and
connective tissue that contributes to craniofa-
cial development is derived from cranial neural
crest cells, which migrate from the hindbrain
rhombomeres (Koentges & Matsuoka 2002,
Le Douarin & Kalcheim 1999). Correlating
with the two-segment periodicity, relatively lit-
tle neural crest is derived from r3 and r5, and
this arises due to interactions between rhom-
bomeres, and between rhombomeres and their
surrounding environment. The hindbrain, cra-
nial neural crest, and ectodermal placodes com-
bine to form the cranial nerves of the adult
medulla oblongata and pons, whose physical
patterning can be traced back to their rhom-
bomeres of origin (Figure 1a). Hence, rhom-
bomere segmentation governs the formation
and organization of nerve nuclei, ganglion root
positioning, patterns of neurogenesis, and neu-
ral circuitry, which underpins its conserved role
as a complex neural coordination center.

The A-P boundaries and patterns of Hox
gene expression are tightly linked to rhom-
bomeric segments (Keynes & Krumlauf 1994,
Lumsden & Krumlauf 1996, Maconochie et al.
1996). In accord with the property of colinear-
ity, most of the genes from PG 1–4 display or-
dered and nested domains of expression, which
have anterior boundaries that map to the junc-
tion between rhombomeres (Hunt et al. 1991,
Wilkinson et al. 1989). With few exceptions,
genes within a cluster have an A-P boundary
of expression that varies with a two-segment
periodicity from the adjacent genes. The A-P
boundary of Hoxb2 maps to the r2/r3 junction,
whereas Hoxb3 marks the r4/r5 boundary, and
Hoxb4 maps to the r6/r7 junction (Figure 2b).

Cranial neural crest
cells: multipotent
cells that delaminate
from the midbrain and
hindbrain to generate
most bone and
connective tissues of
the head

Hox genes within a given PG also generally have
the same boundaries of gene expression. Thus,
members from Hox groups 2, 3, and 4 have an-
terior boundaries that map to the r2/r3, r4/r5,
and r6/r7 boundaries, respectively (Figure 2b).

Exceptions to the two-segment periodicity
in boundaries of Hox expression are Hoxa2,
Hoxa1, and Hoxb1. Hoxa2 expression extends
up the r1/r2 boundary and is the only Hox gene
expressed in r2. In the mouse, at 8.0 days post
coitum (dpc), both Hoxa1 and Hoxb1 are ex-
pressed up to the presumptive r3/r4 boundary.
However, by 9.5 dpc Hoxa1 is rapidly downreg-
ulated in the hindbrain, whereas the expression
of Hoxb1 becomes restricted to r4. This illus-
trates that domains of Hox expression are dy-
namic during the period of segmentation, and
there can also be segment specific variations in
the levels of expression (Figure 2). Of the 12
Hox genes in PG 1–4, only Hoxd1 and Hoxc4 are
not expressed in the hindbrain.

The nested domains of Hox expression,
which are also observed in non-neural ecto-
derm, and cranial neural crest cells and their
derivatives form a Hox code that regulates pat-
terning in the branchial region of the head
(Trainor & Krumlauf 2000, 2001). The ex-
pression of Hox genes in the hindbrain and
cranial neural crest is regulated independently
(Maconochie et al. 1999). Therefore, patterns
established in the rhombomeres are not pas-
sively translated into the arches when neural
crest cells migrate, although regulatory events
within the hindbrain impact the establishment
of Hox expression in neural crest cells.

During neural development, Hox genes be-
gin to display differential expression that corre-
lates with the onset of neurogenesis. Within the
hindbrain, columns of different classes of neu-
rons begin to form, and many of these are cor-
related with rhombomeres and rhombomere
boundaries. These columns correspond to the
expression domains of known factors in neu-
rogenesis, and functional studies have begun
to demonstrate that Hox genes play later roles
in regulating patterns of neurogenesis and re-
gional identity (Kiecker & Lumsden 2005).

www.annualreviews.org • Hox Genes and Segmentation 435
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Function of Hox Genes
in Rhombomere Identity

Functional support for the role of Hox genes
in regulating the segmental identity of rhom-
bomeres has come through analyses of pheno-
types arising from loss- and gain-of-function
experiments in several species (Lumsden 2004,
Maconochie et al. 1996, Rijli et al. 1998, Moens
& Prince 2002). The requirement for Hox pro-
teins in many different tissues often results in
complex defects in Hox mutants. Moreover,

Hoxa1

Hoxb1

Krox20

Kreisler

RA

RA

RA

?

vhnf1

iro7

vhnf1

Hoxb3

Krox20Krox20
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Hoxb2

Hoxa2

Kreisler

Hoxa3
Hoxa4

Hoxb4

Hoxd4

a

b

Pre-rhombomeric hindbrain

Rhombomeric hindbrain

pr1 pr2 pr3 pr4 pr5 pr6 pr7

r1 r2 r3 r4 r5 r6 r7

functional compensation between genes can
mask regulatory activity. Despite these difficul-
ties, genetic studies have provided insight into
the role of Hox genes in control of segmental
patterning in the hindbrain.

The products of the PG1 genes, Hoxa1 and
Hoxb1, play multiple roles in the mouse hind-
brain, which, in part reflect their regulatory
relationship, because Hoxa1 helps to activate
Hoxb1 in r4. In Hoxa1 mutants, r5 is lost, and
there is a fusion between r4 and r6 (Carpenter
et al. 1993, Mark et al. 1993). In Hoxb1
mutants, there is a failure to maintain the
identity of r4, and it adopts an r2-like character
(Studer et al. 1996). Conversely, ectopic

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
Gene patterning network of the vertebrate
hindbrain. (a) Network prior to the appearance of
the rhombomeres. The yellow background
represents the retinoic acid (RA) gradient produced
by the Raldh2 (Aldh1a2) enzyme that is located in
the somites flanking the caudal hindbrain. In
response to RA, the expression of Hoxa1 and Hoxb1
(both in green) is initiated in the neural tube by
retinoic acid response elements (RAREs) located in
their 3′ flanking sequences. Hoxb1 directly activates
expression of Krox20 (red ) in the presumptive r3
territory. In the zebrafish, reciprocal interactions
between iro7 ( purple) and vhnf1 (orange) partition
the hindbrain into two parts. These domains are
further subdivided by the actions of group 1
paralogs, Krox20 and kreisler (light blue).
(b) Network at the appearance of the rhombomeres.
The borders of genes that are expressed in the
hindbrain coincide with its segmentation. The
earlier expression patterns of Krox20 and Hoxb1
become localized to specific rhombomeres, and at
this time Hoxa1 expression is no longer detected in
the hindbrain. The expression of other Hox genes is
mediated by crossregulatory [i.e., Hoxb1 regulating
group 2 paralogs (dark blue) expression in r4],
upstream regulators such as Krox20 and kreisler and
in response to RA [i.e., group 4 paralogs (dark
green)]. Through the opposing action of members of
the Cyp26 family (not shown), the availability of RA
( yellow background) domain has been posteriorized to
the caudal end of the hindbrain. Several Hox genes
display higher levels of expression in different
rhombomeres, as indicated by the darker blue
shading for Hoxb2 and Hoxa2 in r3 and r5. Many of
the Hox genes autoregulate (circular arrows). The
expression of Hoxd3 is not shown.
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expression of Hoxa1 or Hoxb1 leads to a
transformation of r2 into an r4 character
(Zhang et al. 1994). In Hoxa1/Hoxb1 com-
pound mutants, groups of cells form in the
position of future r4, but they fail to adopt a
segmental identity, and no neural crest cells
migrate from this segment (Gavalas et al. 2001,
Rossel & Capecchi 1999, Studer et al. 1998).
Hence, in the absence of these genes, future
r4 is locked in a ground state and unable to
enter hindbrain patterning. In zebrafish, the
role of hoxb1a and hoxb1b in patterning the
hindbrain appears to be conserved (Moens &
Prince 2002). Therefore, Hoxa1 and Hoxb1
work together to specify r4 identity, and Hoxa1
has an additional role in forming r5.

Hoxa2 is the only PG2 member expressed
in r2, and it is required to maintain segmental
properties of r2. In Hoxa2 mutants, there is a re-
duction of r2 and an expansion of r1, resulting in
an enlargement of the cerebellum at the expense
of the pons (Gavalas et al. 1997). Major defects
are observed in cranial neural-crest cell deriva-
tives of the second branchial arch, and support-
ing evidence from other species indicates that
Hoxa2 plays a conserved role in regulating the
differentiation of bone and connective tissue in
craniofacial development (Trainor & Krumlauf
2001, Rijli et al. 1998). Hoxa2 and Hoxb2 are
both expressed in r3-r7 (Figure 2b). In mouse,
analyses of single and compound mutants for
these genes show that Hoxa2 influences the size
of r3, and Hoxb2 contributes to the maintenance
of r4 identity (Davenne et al. 1999, Gavalas et al.
2003). In double mutants, the segmentation of
the r3-r5 region is relatively normal, but the
inter-rhombomeric boundaries between r1 and
r4 are missing. Therefore, input from Hoxa2
and Hoxb2 is needed to generate the correct
r2/r3 boundary.

For PG3 genes, embryos with single and
double mutant combinations of Hoxa3, Hoxb3,
or Hoxd3 display vertebral defects and many
other abnormalities. However, hindbrain pat-
terning appears to be normal, although there
are defects in the formation of the IX cranial
nerve (Manley & Capecchi 1997). The loss of
all three PG3 genes results in altered motor

Retinoic acid (RA):
a vitamin A derivative
that functions as a
morphogen to instruct
developmental
pathways

neuron development in r5 and r6 and the ec-
topic activation of Hoxb1 in r6 (Gaufo et al.
2003). This demonstrates that the PG3 pro-
teins work in concert to regulate the identity of
r5 and r6 in part through repression of Hoxb1.
The PG4 genes Hoxa4, Hoxb4, and Hoxd4 are
expressed up to the r6/r7 border in the hind-
brain, and mutants display severe skeletal ab-
normalities. However, no hindbrain or neuro-
logical defects have been reported even in com-
pound mutants in which all three of these PG4
genes are deleted (Horan et al. 1995).

Although this is beyond the scope of this
review, phenotypes in Hox mutants reveal co-
ordinated defects in derivatives of the rhom-
bomeres: the neurons and cranial neural crest,
and in cranial ganglia. These defects under-
score how early segmental organization and
Hox expression impact later processes of cran-
iofacial development and neural architecture,
and indicate that Hox genes perform multiple
roles in elaborating the segmental plan of head
development.

THE INDUCTIVE PHASE
OF HOX EXPRESSION
IN THE HINDBRAIN

Retinoids and Initiation
of Hox Expression

Evidence from in vitro and in vivo studies sup-
ports a role for retinoic acid (RA) in initiating
early Hox gene expression and patterning the
hindbrain (Gavalas 2002, Gavalas & Krumlauf
2000, Maden 2002). In several vertebrate model
systems, adding RA during early embryogene-
sis results in an expansion of the posterior hind-
brain at the expense of the anterior hindbrain.
Conversely, reducing the amount of available
RA, or inhibiting retinoid signaling, results in a
posterior expansion of anterior hindbrain char-
acteristics at the expense of the posterior hind-
brain. These RA-dependent changes in the seg-
mentation program of the hindbrain directly
correlate with changes in Hox gene expression
(Gavalas 2002).

Regulatory studies indicate that RA di-
rectly activates some Hox genes. The Hoxa1,
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Fibroblast growth
factor (Fgf): a large
family of secreted
ligands that sends
signals to regulate
growth, survival,
migration, and
patterning processes in
development

Hoxb1, Hoxa4, Hoxb4, and Hoxd4 genes all con-
tain retinoic acid response elements (RAREs)
that control aspects of their neural expression
(Gould et al. 1998, Marshall et al. 1994, Packer
et al. 1998, Studer et al. 1998, Zhang et al.
2000). Typically, these RAREs are bound by a
heterodimer composed of a retinoid X receptor
(RXR) and a RA receptor (RAR). In the ab-
sence of ligands, they recruit corepressors, but
when RA is present, they undergo an allosteric
change and recruit coactivators. The RAREs
that are located downstream of the coding ex-
ons of Hoxa1 and Hoxb1 genes are required to
initiate their expression up to the r3/r4 bound-
ary in the hindbrain (Dupé et al. 1997, Studer
et al. 1998) (Figure 2a).

Several models have been proposed to ac-
count for the experimental evidence on the
roles of RA in regulating hindbrain segmenta-
tion. However, by integrating information on
the synthesis and degradation of RA, a com-
mon picture begins to emerge (Niederreither
& Dollé 2008). Levels of RA vary along the
A-P axis of the hindbrain. At the caudal end
of the hindbrain, RA is present at its highest
concentration, and the concentration progres-
sively decreases in rostral directions. In the early
hindbrain region, RA is initially generated by a
metabolic enzyme, Retinaldehyde dehydroge-
nase 2 (Raldh2), expressed in the somites that
flank the caudal hindbrain, which converts reti-
naldehyde into RA (Niederreither et al. 1997).
RA from the somites diffuses into the neural
tube to influence hindbrain patterning includ-
ing the regulation of Hox expression (Niederre-
ither & Dollé 2008). As development proceeds
and more somites are formed, the source of
RA synthesis regresses in a posterior direction.
To counterbalance synthesis, members of the
Cyp26 family degrade retinoids, and they are
dynamically expressed in the anterior hindbrain
during embryonic development, where they
are required for normal hindbrain patterning
(Abu-Abed et al. 2001, Sakai et al. 2001).

These findings suggest a model in which
domains and boundaries of RA in the
hindbrain shift over time in concert with
changes in the source of RA and its degradation.

The activation of Hox genes is also progressive,
and there are distinct periods when a Hox gene
is competent to respond to an inducing signal.
Therefore, the relative levels of RA available
and the windows of competence will determine
if and when any given Hox gene is capable of be-
ing induced in the hindbrain (Hernandez et al.
2007, Sirbu et al. 2005).

Fgf Signaling and Initiation
of Hox Expression

Fibroblast growth factor (Fgf) signaling is im-
portant in initiating Hox gene expression in the
hindbrain. In the zebrafish, Fgf3 and Fgf8 are
expressed before hindbrain segmentation and
become localized to the prospective r4 terri-
tory (Maves et al. 2002, Walshe et al. 2002).
Reducing the expression of Fgf3 and Fgf8 al-
ters the expression of many key genes associ-
ated with segmentation, as evidenced by the
loss of Hoxa2 expression in r2-r5, Krox20 ex-
pression in r5, and valentino/kreisler expression
in r5. Hence, Fgf signaling participates in reg-
ulating the identity of r5 and r6 in the zebrafish
hindbrain.

The patterns of expression of Fgf orthologs
vary between species, suggesting that different
members of the family may participate in in-
ductive events. In the chick embryo, activating
Fgf signaling in the presumptive r7-r8 terri-
tory induces Krox20 and kreisler expression,
whereas inhibition abolishes the expression of
these same genes (Marin & Charnay 2000).
This supports a conserved role for Fgf signal-
ing in regulating the identity of the r5-r6 region
through the activation of Krox20 and kreisler.
Hence, the induction of Hox genes by Fgfs may
be indirect.

vhnf1 and Induction of Hox Genes

In the zebrafish, there is evidence that Fgf and
RA signaling regulates the expression of variant
hepatocyte nuclear factor (vhnf1) in the future r5
and r6 territories (Hernandez et al. 2004). vhnf1
encodes a homeodomain transcription factor
that is transiently expressed in the presumptive
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r5 and r6 (Aragón et al. 2005). The loss of vhnf1
results in abnormal gene expression in the r4-
r6 region. The r4 expression domain of Hoxb1
expands posteriorly, whereas Krox20 expression
is reduced in r5, and the expression of kreisler
(valentino) is abolished in r5 and r6. Conversely,
ectopic expression of vhnf1 results in an anterior
expansion of kreisler expression. These stud-
ies demonstrate that vhnf1 functions to specify
early r5/r6 identity by repressing early r4 genes
(Hoxb1) and by activating r5 and r5/r6 spe-
cific genes, such as Krox20 and kreisler, which
in turn directly regulate rhombomere-specific
expression of Hox genes (Sun & Hopkins 2001,
Wiellette & Sive 2003) (Figure 2). In support of
this model, analysis in the mouse has shown that
vhnf1 binds to the kreisler gene and directly reg-
ulates expression in r5 and r6 (Kim et al. 2005).
RA signaling directly regulates neural expres-
sion of the vhnf1 gene through a RARE located
in its fourth intron (Pouilhe et al. 2007). Fur-
thermore, vhnf1 expression in r5 and r6 is de-
pendent on the presence of two binding sites
for kreisler, suggesting that kreisler and vhnf1
form a direct positive feedback loop to maintain
expression in r5 and r6.

Iroquois Genes and Induction
of Hox Genes

In zebrafish, vhnf1 expression anterior to r5 is
repressed by the product of an Iroquois (Irx/Iro)
gene. The Iroquois (Irx/Iro) gene complex was
first characterized in Drosophila, and it encodes
homeodomain transcription factors of the three
amino acid extension (TALE) subclass. The
TALE superfamily also includes members of
the Pbx, Meis, and Prep gene families, which
function as cofactors for Hox activity (Burglin
1997). In Drosophila, members of Iro-C acti-
vate proneural genes, and their function seems
to have been conserved in vertebrates. In ze-
brafish, both iro1 and iro7 genes are expressed
in the hindbrain and the posterior expression
of iro7 corresponds to the future r4/r5 bound-
ary (Lecaudey et al. 2004). Both iro7 and vhnf1
are involved in a repressive loop, whereby iro7

represses vhnf1 expression in r4 and vhnf1
blocks iro7 expression in r5 (Figure 2a).

ESTABLISHMENT OF HOX
EXPRESSION IN RHOMBOMERES

Before morphological segmentation of the
hindbrain, the inductive events described above
activate Hoxa1, Hoxb1, kreisler, Krox20, vhnf1,
and Irx expression in the developing hindbrain
with distinct domains that ultimately mark the
future rhombomeric segments. As cells seg-
regate, the borders of these expression do-
mains sharpen and visible segments appear. Hox
expression becomes further refined by direct
regulation through upstream factors, such as
Krox20 and kreisler, and through cross- and
autoregulatory interactions between the Hox
genes themselves. These inputs begin to de-
fine a gene regulatory network for establishing
segmentally-restricted domains of Hox expres-
sion in the hindbrain.

Krox20 and Activation of Hox Genes

Krox20 is a zinc finger transcription factor
that is expressed in prospective r3 and r5 of
the hindbrain. In the absence of Krox20, r3
and r5 cells form initially, but they are lost at
later stages (Schneider-Maunoury et al. 1997,
Voiculescu et al. 2001). Fate mapping suggests
that r3 and r5 either switch their adhesive prop-
erties or acquire the identity of an adjacent
even-numbered segment, which leads them to
intermingle with neighboring segments. The
regulation of Krox20 expression is complex
and involves the input of the Wnt, RA, and
Fgf signaling pathways. Three cis-regulatory
modules contribute to control of Krox20, and
these integrate inputs from Krox20 itself (au-
toregulation), vhnf1 in r5, and Hox/Pbx in r3
(Chomette et al. 2006, Wassef et al. 2008).
In the zebrafish, both Iro7 and Meis1.1 con-
trol expression of Krox20 in r3 (Stedman et al.
2009).

Krox20 exerts a role in segmental iden-
tity by directly activating the transcription
of Hoxa2, Hoxb2, and EphA4 in r3 and r5
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(Maconochie et al. 1996, Nonchev et al. 1996).
In combination with kreisler, Krox20 activates
Hoxb3 expression in r5 (Manzanares et al. 2002).
Conversely, Krox20 represses the expression of
Hoxb1 in r3 and r5 by binding with PIASxβ,
which is required for Hoxb1 expression in r4
(Garcia-Dominguez et al. 2006). Hoxb1 or
Hoxb2 may feedback through a Hox/Pbx mo-
tif in a regulatory module of Krox20 to help
initiate or maintain its expression. There is evi-
dence that early expression of Hoxa1 synergizes
with Krox20 to specify r3 identity (Helmbacher
et al. 1998). These studies demonstrate a criti-
cal role for Krox20 in activating the Hox genes
essential for regulating the identity of r3 and r5
(Figure 2b).

kreisler (kr) and Activation
of Hox3 Genes

The kreisler (kr) mutation is an X-ray induced
chromosomal inversion of a gene, which en-
codes for a basic domain-leucine zipper (bZIP)
transcription factor of the Maf family that
is expressed in r5 and r6 (Cordes & Barsh
1994). In Kr mutant mice, r5 and r6 fail to ac-
quire a proper segmental identity, and adopt
an r4 character instead (Giudicelli et al. 2003,
Manzanares et al. 1999b, McKay et al. 1994). In
zebrafish, valentino, the ortholog of kreisler, has
a conserved role in regulating the identity of r5
and r6 (Moens et al. 1996, 1998). As described
above, kreisler and vhnf1 are involved in a direct
positive feedback loop in r5 and r6, triggered
by RA and Fgf signaling. With respect to Hox
genes, regulatory analyses have demonstrated
that kreisler directly binds to cis-modules up-
stream of Hoxa3 and Hoxb3 to activate their ex-
pression in r5 and r6 (Manzanares et al. 1997,
1999a).

Auto- and Cross-regulation
Among Hox Genes

Once segmental Hox gene expression has been
initiated by the signaling pathways and up-
stream factors that function in early hindbrain

patterning, auto- and crossregulation among
the Hox genes play an important role in main-
taining rhombomeric expression. In the de-
veloping hindbrain, Hox/Pbx-dependent auto-
regulatory elements (AREs) have been found
in regulatory modules of Hoxb1, Hoxa3, Hoxb3,
and Hoxb4 genes. Transient RA signaling acti-
vates Hoxb1 and Hoxb4, and they positively reg-
ulate their own expression in r4 and r7 by auto-
regulation (Gould et al. 1997, Pöpperl et al.
1995). The Hoxa3 and Hoxb3 genes are tran-
siently activated by kreisler, and in turn auto-
regulation reinforces this expression in r5
(Manzanares et al. 2001) (Figure 2b).

These AREs also function as Hox-response
elements that are capable of mediating cross-
regulatory inputs by other Hox genes. For
example, Hoxa1 and Hoxb2 modulate r4-
restricted expression of Hoxb1 through inter-
action with its AREs. Similar cross-regulatory
interactions are observed by Hox3 members
on the Hoxa3 ARE (Manzanares et al. 2001)
and Hox4 members on the Hoxb4 ARE (Gould
et al. 1997, Serpente et al. 2005). Further ev-
idence for cross-regulation in the hindbrain is
illustrated by the pivotal role played by Hoxb1
in regulating r4 identity. Hoxa2 and Hoxb2 are
also expressed in r4, and the regulatory basis
of their expression is mediated through direct
activation by Hoxb1 (Maconochie et al. 1997,
Tümpel et al. 2007). This establishes a regula-
tory cascade in r4, in which RA induces Hoxa1
and Hoxb1, which in turn stimulate Hoxb1 via its
ARE. Hoxb1 then activates Hoxa2 and Hoxb2 in
r4, and they feed back into the Hoxb1 ARE to re-
inforce expression at later stages in r4. Analyses
of single and compound mutants for members
of this network provide functional support for
the relevance of these regulatory relationships
(Davenne et al. 1999, Gavalas et al. 2003, Studer
et al. 1998).

The Hindbrain Regulatory Network

The model that emerges for segmental regula-
tion of Hox genes indicates that key signals and
upstream factors have multiple inputs at many
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levels (Figure 2). There is not a strict hierar-
chy of functions. Krox20 can regulate segmental
identity via modulation of Hox genes, but it
can also contribute to cell sorting by regula-
tion of EphA4. Hox genes themselves can regu-
late the formation of a segment (Hoxa1 in r5),
segmental identity, and cell sorting. Regulatory
analyses reveal many examples of feedforward
and feedback loops that reinforce or restrict ex-
pression in rhombomeres. This presents a chal-
lenge in characterizing detailed gene regulatory
networks of hindbrain segmentation, complete
with Hox target genes. However, multiple in-
puts that reinforce expression may help to ex-
plain why this is such a robust and conserved
regulatory cascade in vertebrate development.

SEGMENTATION OF PARAXIAL
MESODERM

Formation of the Paraxial Mesoderm

In this section, we briefly discuss aspects of
paraxial mesoderm development that are rel-
evant to understanding how global A-P pat-
terning is established within this tissue. Cells
that will contribute to the future paraxial meso-
derm are located in the epiblast adjacent to
and within the primitive streak. These cells will
ingress primarily through the rostral primitive
streak to form the definitive paraxial mesoderm
(Kinder et al. 1999). There are two popula-
tions of paraxial mesoderm progenitors. One
group of cells ingresses through the primitive
streak from the adjacent epiblast to contribute
to short stretches of the paraxial mesoderm that
form the lateral somite. Another, stem cell-
like population resides within the streak over
time and generates descendants that give rise
to the medial somite at all axial levels (Iimura
et al. 2007, Psychoyos & Stern 1996, Wilson &
Beddington 1996). This implies that there are
mechanisms for synchronizing the axial iden-
tity between these two populations of somitic
precursors.

The temporal coordination of these cell
behaviors is tightly regulated. Recruitment of

Epiblast: the
primordial outer layer
of the blastula that
gives rise to the
ectoderm and contains
cells capable of
forming the endoderm
and mesoderm

Primitive streak: the
thickened posterior
area of the epiblast
composed of cells that
proliferate and migrate
to form the mesoderm
and help to establish
the future longitudinal
axis of the early
embryo

Node: a thickening at
the anterior end of the
primitive streak which
acts a signaling center

nascent paraxial mesodermal cells to the prim-
itive streak depends on BMP signaling (Miura
et al. 2006), whereas Fgf signaling is required
for the migration of these cells away from the
primitive streak (Ciruna et al. 1997, Sun et al.
1999). Fgfs are also required upstream of Tbx6
for the specification of paraxial mesoderm iden-
tity (Chapman et al. 2003, Ciruna & Rossant
2001), and Wnt3a plays a role in regulating
paraxial mesoderm versus neural cell fate de-
cisions (Yoshikawa et al. 1997). It is tempting to
speculate that many of these processes, directly
or indirectly, impact A-P patterning of the
paraxial mesoderm by Hox proteins. Consistent
with this, mutant alleles of Fgfr1 lead to verte-
bral homeotic defects correlated with changes
in Hox expression (Partanen et al. 1998). Mu-
tation of the murine type IIB activin receptor or
Wnt-3a also disrupts A-P patterning associated
with shifts in the anterior boundaries of Hox
gene expression (Oh & Li 1997).

Following neuropore closure in the mouse
at 10.5 dpc, ingression of mesodermal pro-
genitors from the epiblast ceases (Wilson &
Beddington 1996) and subsequently, cells of the
paraxial mesoderm are generated by the tail-
bud (Cambray & Wilson 2007). Many of the
same signaling molecules that are present dur-
ing gastrulation continue to be expressed in the
tailbud with a spatial arrangement analogous
to that found in the primitive streak and node,
although levels can vary with the maturation of
the tailbud. Consequently, Hox genes and other
regulators of A-P patterning are likely to be ex-
posed to changing regulatory inputs as the for-
mation of paraxial mesoderm proceeds during
development.

Somitogenesis

The newly formed paraxial mesoderm begins to
expand, and the population between the cells
emerging from the primitive streak and the
most newly formed somite is referred to as the
presomitic mesoderm (PSM) (Figure 4). Bilat-
eral pairs of somites that flank the neural tube
form sequentially with anterior somites being
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Mesenchyme: groups
of loosely organized
undifferentiated cells
mostly derived from
mesoderm, in contrast
to epithelial cells
which are tightly
interconnected

Sclerotome: the
mesenchymal
compartment formed
from the ventral
somite after
differentiation that will
give rise to vertebrae

older than posterior somites. An oscillatory
mechanism (a clock) coupled with a morphogen
gradient (a wavefront) underlies both the pe-
riodicity of somite formation and the proper
partitioning of paraxial mesoderm cells into
somites of the appropriate size (Dequeant &
Pourquié 2008).

The oscillator is characterized by cyclic
transcriptional activity manifesting as waves of
expression progressing through the PSM in a
posterior to anterior direction. Components of
both the Fgf and Notch signaling cascades have
been shown to cycle in-phase with one another,
whereas Wnt target genes have been shown to
oscillate in the converse phase (Aulehla et al.
2003, Dequeant et al. 2006, Palmeirim et al.
1997). Overlaying this dynamic pattern of gene
expression are P-A gradients of FGF and Wnt
(Diez del Corral & Storey 2004, Dubrulle et al.
2001, Dubrulle & Pourquié 2004). High lev-
els of Fgf signaling are believed to keep the
posterior two-thirds of the PSM in an unde-
termined state with respect to the segmen-
tation program. Along the P-A Fgf gradient,
there is a threshold (the determination front)
in which cells alter their response and begin the
process of segmentation and somite formation
(Dequeant & Pourquié 2008). RA signaling,
mediated by Raldh2-dependent synthesis of RA
in anterior somites, may antagonize Fgf signal-
ing to help set the determination front during
the initiation of somitogenesis (Diez del Cor-
ral & Storey 2004, Sirbu & Duester 2006). The
determination front is maintained at a fixed rel-
ative position in the PSM over time as a result of
a balance between the rates that cells are added
and leave the PSM to form somites.

The past decade has seen remarkable
progress in unraveling the molecular series
of events underlying somitogenesis. As briefly
outlined above, Wnt, Fgf, RA, and Notch are
key players in the complex and dynamic pro-
cesses that occur within the PSM. It is intrigu-
ing that genetic studies have implicated each of
these pathways as upstream regulators of Hox
gene expression within the paraxial mesoderm,
coupling somitogenesis and the establishment
of vertebral positional identity.

Differentiation of the Somites

The newly formed somite consists of a mes-
enchymal core surrounded by a block of
epithelial cells. During development, somite
differentiation proceeds progressively in an
anterior to posterior direction. The somite un-
dergoes a number of morphological changes in
response to signals arising from the neighbor-
ing tissues such as the notochord, neural tube,
ectoderm and lateral plate mesoderm (Christ
et al. 2004) (Figure 3a). Somites are polarized
along their A-P, D-V, and mediolateral axes.
The ventral half of the somite undergoes an
epithelial-to-mesenchymal transition to form
the sclerotome, which generates the vertebrae
of the axial skeleton. The dorsal half of the
somite retains its epithelial character and forms
the dermomyotome, giving rise to the dorsal
dermis and muscles of the back and limbs.

Although they respond in stereotyped ways
to inductive cues, the sclerotomes differentiate
into vertebrae that are clearly different from
each other according to their position along
the A-P axis. This is illustrated by the different
anatomical types of vertebrae, i.e., cervical, up-
per thoracic, lower thoracic, lumbar, sacral, and
caudal vertebrae. However, defining morpho-
logical characteristics can be seen between ver-
tebrae within an anatomical unit (Figure 3b–d )
and along the entire vertebral column. Newly
formed somites already possess the A-P infor-
mation needed to generate their ultimate verte-
bral identity, because somites moved from one
A-P level to another will generate a vertebral
structure characteristic of its origin and not its
new location (Fomenou et al. 2005, Nowicki &
Burke 2000). This A-P information is thought
to be governed by early differences in the devel-
opmental programs regulated by the Hox code.

Hox Expression in Nascent
and Presomitic Mesoderm

Hox genes are expressed in nested domains
along the A-P axis of paraxial mesoderm
throughout the progressive process that leads
to the generation of the vertebral column. Hox
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expression patterns are initiated in a temporally
colinear manner within the caudal epiblast and
primitive streak cells (Deschamps & Wijgerde
1993, Gaunt & Strachan 1996, Iimura &
Pourquié 2006). Once initiated, the expression
of any given gene then spreads towards the mid-
to-anterior primitive streak, where the paraxial
mesoderm progenitors reside (Figure 4a,b). A

a

b

Neural tube

Rib

Neural arch

c

C1 or atlas

Anterior arch
of the atlas

Transverse
process

Dermamyotome Surface
ectoderm

Notochord

Dorsal aorta

Sclerotome

d

C2 or axis 

Centrum

Transverse
process

Dens

Spinous
process

Spinous
process

Centrum

subset of expression then expands beyond the
node into the posterior neural plate. This pat-
tern begins with the PG 1 Hox genes, and it is
reiterated for each successive Hox gene along
the Hox clusters in a progression from the 3′

end of each complex to the 5′ end. The tempo-
ral window that separates the first appearance of
expression of PG1 to PG9 in the caudal primi-
tive streak is very narrow due to the rapid elab-
oration of this region of the embryo. However,
there is a clear, colinear temporal order in the
onset of Hox expression at and anterior to the
node (Figure 4). The Hox code is not passively
carried through the primitive streak, however,
because the Hox proteins themselves play a
role in timing the ingression of nascent parax-
ial mesodermal cells (Iimura & Pourquié 2006).
By regulating the sequential ingression of cells
into the paraxial mesoderm, temporal colinear-
ity becomes translated into spatial colinearity.

Hox expression boundaries are not fully de-
termined at the time of gastrulation. Expres-
sion boundaries continue to be subject to reg-
ulatory influences as cells move through the
PSM and become incorporated in somites and
also throughout later stages in somite develop-
ment. Whereas the temporally colinear onset of
Hox gene expression in the anterior primitive
streak presages later spatial colinearity within

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Somite differentiation and vertebral morphology.
(a) The somite differentiates into an epithelial
dermamyotome dorsally and a mesenchymal
sclerotome (red ) ventrally in response to inductive
signals from neighboring structures such as the
surface ectoderm, neural tube, notochord, and
dorsal aorta. The sclerotome will give rise to the
vertebrae. (b) Represented is a prototypical thoracic
vertebra demonstrating characteristic vertebral
features such as the centrum, neural arch, and
spinous and transverse processes. Variations in the
morphology of the neural arch and processes
between many of the vertebrae make the vertebral
column an ideal system for assessing the role of Hox
genes in assigning segmental identity. For example,
clear differences in the morphology of (c) the atlas
and (d ) the axis provide visual landmarks for
determining the presence of partial or complete
homeotic transformations of these vertebrae.
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the somites, the anterior boundaries of Hox
gene expression are not solely dependent on lin-
eage transmission. Lineage tracing studies have
shown that the expression of most Hox genes in
the anterior primitive streak is initiated in cells
that will form somites anterior to the defini-
tive expression boundary of the respective gene
(Forlani et al. 2003). This suggests that the
anterior boundaries of Hox expression in the
paraxial mesoderm are established by activation
in a broad domain that becomes refined through
repressive mechanisms that occur in the PSM
and/or in the somites. There is evidence that
Fgf signaling plays a role in refining the early
Hox expression boundaries that are associated
with specific somites (Dubrulle et al. 2001).

Transplantation of the caudal PSM to more
anterior levels has shown that axial identity has
already been established (Fomenou et al. 2005).
Because the caudal PSM is composed of cells
that have traversed the primitive streak and
become committed to the paraxial mesoderm
most recently, this places the establishment of
axial identity early in the formation of the parax-
ial mesoderm. Hence, the later modulation of
Hox expression in the PSM and somites may
only be important for the refinement of the
spatial pattern that is generated during the pro-
cess of gastrulation, perhaps to coordinate Hox
boundaries with precise somites.

Hox Expression and the
Segmentation Clock

A number of experiments suggest that the clock
and wavefront mechanism that drives the peri-
odic segmentation of PSM tissue into somites
also regulates Hox gene expression. The expres-
sion of at least four genes is temporally dynamic
within the rostral PSM with a periodicity that
corresponds to that of the known cyclic genes
(Zakany et al. 2001). It remains possible that
other Hox genes also cycle in the PSM. Func-
tional support for this link comes from evidence
that the expression of at least two Hox genes is
dramatically reduced, if not absent, specifically
in the paraxial mesoderm of mice mutant for
the Notch effector RBPJk (Zakany et al. 2001).

Hox Expression in the Somites

Following activation, most Hox genes are dy-
namically expressed in the somites and their
derivatives (pre-vertebrae). The main excep-
tions are the PG1 Hox genes, whose expression
extends into the unsegmented paraxial meso-
derm that is anterior of the first somite and then
is rapidly lost. During somite development and
differentiation, the domains of Hox expression
that are established at earlier stages can shift
in anterior and posterior directions. There can
also be sharp posterior and anterior boundaries.
The pattern of these changes varies consider-
ably from gene to gene, suggesting additional
regulatory inputs are selectively altering the ini-
tial colinear domains of nested Hox expression.
This might be part of the process of redeploying
Hox genes for later functions in somite devel-
opment, in addition to their early role in regu-
lating segmental identity.

The regulatory basis and relevance of these
later patterns of Hox expression have not been
examined in great detail. However, the tar-
geted deletion of enhancers required for pre-
cise temporal activation of Hoxc8, Hoxd10, and
Hoxd11 in paraxial mesoderm shows that cor-
rect early Hox gene activation is critical for the
control of vertebral identity and that later do-
mains of somite expression are not dependent
on the early regulatory regions ( Juan & Ruddle
2003, Zakany et al. 1997). Hence, Hox expres-
sion patterns in paraxial mesoderm, from in-
duction to formation of the axial skeleton, are
refined by multiple regulatory inputs within the
PSM, somites, and surrounding tissues follow-
ing their initial activation during gastrulation
(Figure 4c). This is probably mediated by inde-
pendent cis-regulatory modules that direct the
dynamic patterns of Hox expression in paraxial
mesoderm and its derivatives.

Function of Hox Genes
in Somitic Identity

Analyses on patterning of the axial skeleton
have provided some of the strongest evidence in
vertebrates that Hox genes exert their functions
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Figure 4
Temporal and spatial colinearity of Hox expression in the developing paraxial mesoderm. Depicted are schematics of the posterior region
of the developing mouse embryo. The nascent and definitive paraxial mesoderm is shown in (red ). (a) The colinear appearance of Hox
expression in the posterior-most embryo occurs in rapid succession for most Hox genes during the head-fold stage. (b) The onset of Hox
expression in the nascent paraxial mesoderm during the expansion phase displays clear temporal colinearity as seen in the progressively
more 5′ Hox genes expressed in this region over time. Thus, temporal colinearity during this phase directly contributes to spatial
colinearity within the developing paraxial mesoderm. (c) Hox expression in the paraxial mesoderm is characterized by multiple phases
that correspond to the initiation of expression in progenitor cells in the primitive streak, the establishment of defined A-P boundaries in
developing somites and the maintenance of these boundaries. Disruption of Wnt, TGF-β, Fgf, and RA signaling leads to the disruption
of axial identity and corresponding changes in Hox gene expression. Similarly, disruption of the function of PcG and TrxG proteins
leads to changes in the maintenance phase of Hox gene expression. NT, neural tube; PS, primitive streak; PSM, presomitic mesoderm.

as selector genes by regulating regional identity.
The distinct features of individual structures
along the A-P axis of the vertebral column have
facilitated phenotypic analyses in Hox loss- and
gain-of-function mutations in mice. The de-
fects include malformed vertebrae, vertebral fu-
sions, rib fusions, and vertebral homeotic trans-
formations. Homeotic transformations in the
context of the vertebral column describe a class
of phenotypes in which a vertebra acquires the
characteristics of its immediate anterior or pos-
terior neighbor, whereas the total number of
vertebrae remains constant. A number of pat-
terns have emerged from these studies that clar-
ify the function of Hox genes in global pattern-
ing of the paraxial mesoderm.

Strengthening the argument that Hox genes
function in the PSM to assign axial identity
to the somites, it has been demonstrated that
overexpression of Hoxa10 in the PSM and
newly formed somites results in homeotic
transformations within the vertebral column

(Carapuco et al. 2005). Overexpression of
this gene specifically within the somites leads
to vertebral dysmorphogenesis rather than
homeotic transformations, illustrating later
roles for the Hox proteins as well. Deletion of
an enhancer responsible for the early activation
of Hoxc8 delays the anterior expansion from
8 dpc until 8.5 dpc and is sufficient to induce
homeotic transformations in the cervical and
upper thoracic regions similar to a null allele of
the gene ( Juan & Ruddle 2003). This further
supports the idea that the global patterning of
somites occurs prior to somite formation.

Based on loss-of-function mutations, most
members of the Hox PG 3–13 play roles in
specifying the identity of the postcranial axial
skeleton. Vertebral homeotic transformations
caused by Hox gene mutations do not always
involve the transformation of an entire vertebra
to that of another along the rostrocaudal axis
but instead may lead only to the transformation
of specific vertebral features (Horan et al. 1995).
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In other cases, the mutation of a Hox gene leads
to more complete homeotic transformations
of one or many vertebrae. Although there is a
general trend for the phenotypes resulting from
single Hox gene mutations to reflect the spatial
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Figure 5
Patterns of homeotic transformations in Hox mutant mice. (a) The most
anterior vertebra that shows either a partial or complete homeotic
transformation as the result of a given Hox gene mutation is indicated. Members
of the same PG are color-coded equivalently. (b) The range of phenotypes in
mice with mutations in entire PGs is depicted. Two emergent patterns are the
reflection of spatial colinearity in the order of Hox phenotypes along the A-P
axis and the functional overlap, in some cases, of different Hox genes in
patterning the same vertebrae. Asterisks indicate the few examples of posterior
homeotic transformations that are observed in some single Hox gene mutants.

colinearity of Hox gene expression, there are
numerous exceptions (Figure 5a). In contrast,
a comparative study of mice with mutations
in an entire PG demonstrated colinearity of
Hox function along the vertebral column and
evidence for functional compensation between
groups (Figure 5b) (McIntyre et al. 2007).
However, there is also evidence that PGs
perform distinct roles in vertebral patterning,
even when the same vertebrae are affected.

Based on the phenomenon of phenotypic
suppression, which was first characterized in
Drosophila, a posterior prevalence model has
been postulated to account for how the func-
tion of posterior Hox proteins overrides the
function of coexpressed anterior Hox proteins
(Gonzalez-Reyes & Morata 1990). According
to this model, segmental identity is imparted
by the most 5′ Hox PG that is expressed at
a given axial level (Duboule & Morata 1994).
In many cases, loss-of-function Hox alleles lead
to defects in much broader domains than ex-
pected from a strict interpretation of the pos-
terior prevalence model, i.e., the defects extend
into regions where more 5′ Hox genes are ex-
pressed. There is also evidence that levels of
expression can influence function in more pos-
terior territories. Therefore, although this ac-
counts for many of the observed Hox mutant
phenotypes in the axial skeleton, there are nu-
merous exceptions to the posterior prevalence-
based models.

The combinatorial model posits that a
somite acquires its segmental identity from the
specific complement of Hox genes it expresses
(Kessel & Gruss 1991). A corollary of this model
is that distinct Hox proteins have unique func-
tions. However, many studies have shown that
Hox genes within the same PG and between
different PG may be functionally equivalent
(Zhao & Potter 2001). For instance, the cod-
ing sequences of Hoxa3 and Hoxd3 were shown
to be functionally interchangeable (Greer et al.
2000). By comparing compound mutants, there
is further evidence that dosages or levels of
gene expression play an important role in de-
termining which genes may share functions in
patterning a region. Despite the difficulties in
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generating a unified model to account for func-
tion, these models provide important clues into
the nature and readout of the vertebral Hox
code and, cumulatively, illustrate that multi-
ple mechanisms are likely to be employed in
a context-dependent manner.

ACTIVATION OF HOX
EXPRESSION IN THE FUTURE
PARAXIAL MESODERM

Despite the wealth of information on the func-
tional roles of Hox proteins in regulating seg-
mental identity in the paraxial mesoderm com-
pared with hindbrain, relatively little is known
about the signaling pathways, upstream tran-
scription factors, and cis-regulatory modules
that directly control Hox expression in this con-
text. Such regulatory information is challeng-
ing to obtain because of the progressive nature
of the segmentation process itself. The timing
of events, from the emergence of cells from the
primitive streak to somite formation, is rela-
tively rapid, and they are associated with exten-
sive cell migration, tissue movements, cell pro-
liferation, and oscillating signals. In the absence
of a series of well characterized cis-regulatory
modules that mediate the diverse aspects of ini-
tiation and maintenance of dynamic Hox ex-
pression in paraxial mesoderm, regulatory rela-
tionships have been inferred largely by assaying
for changes in Hox expression following experi-
mental and genetic perturbations to the system.

Retinoids in Hox Gene Regulation

RA plays a key role in vertebral patterning, in
part, via regulation of Hox expression. Exoge-
nous RA treatment or disruption of RA activity
leads to distinct homeotic transformations and
to alterations in Hox expression (Kessel & Gruss
1991, Niederreither & Dollé 2008). Studies
that detail the patterns of RA activity in the
primitive streak and paraxial mesoderm are be-
ginning to clarify when and where RA may act
(Molotkova et al. 2005, Sirbu & Duester 2006).
Based on the expression of RA-synthesizing en-
zymes (Raldh2 and Cyp1b1) and RA-responsive

reporter gene activity, RA is present during the
time that precedes and coincides with the onset
of expression of most Hox genes in the poste-
rior primitive streak and epiblast. However, RA
activity regresses anteriorly into the PSM by
the time that expression of all but the most 3′

Hox genes are successively activated in anterior
regions of the primitive streak (Niederreither
et al. 1999, Sirbu & Duester 2006).

These findings imply that RA exerts differ-
ent regulatory inputs into Hox activation in the
primitive streak in a stage-dependent manner.
RA may differentially act on 3′ versus 5′ Hox
genes in mesoderm similar to the regulation of
Hox expression by RA in the chick neural tube
(Bel-Vialar et al. 2002). RA may be involved in
the initial induction of almost all of the Hox
genes in the posterior primitive streak, whereas
other factors modulate subsets of Hox genes
in the more anterior territories. In support of
complex inputs by RA, ectopic treatment of em-
bryos with RA can alter vertebral patterning in
distinct early and late time periods, but there
is a refractory period during which no defects
are observed. Furthermore, RA plays a role in
maintaining the bilateral symmetry of somite
formation.

TGF-β Family Members
in Hox Gene Regulation

BMP signaling also contributes to Hox gene
expression (McPherron et al. 1999, Oh & Li
1997, Oh et al. 2002). Homeotic transforma-
tions are observed in type IIB activin receptor
mutants, and the mutation of Gdf11 (Bmp11)
leads to widespread anterior homeotic transfor-
mations throughout the axial skeleton, extend-
ing from the cervical through lumbar verte-
brae (McPherron et al. 1999). The mutation of
Gdf11 results in complex shifts in boundaries of
Hoxc6, Hoxc8, Hoxc10, and Hoxc11 expression.
The mesodermal component of Gdf11 expres-
sion is localized to the primitive streak during
gastrulation and to the tailbud during secondary
body development (McPherron et al. 1999).
Thus, Gdf11 expression includes domains
that contain the progenitors of the paraxial
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mesoderm and newly ingressed presomitic cells
and supports models in which Hox-determined
segmental identity is set up early in the genesis
of the somites.

Wnts in Hox Gene Regulation

In embryonic stem cell models, Wnt signaling
is required for the development of mesoderm,
and BMP and Wnt specify mesodermal fates
by the activation of Hox- and Cdx-dependent
pathways (Lengerke et al. 2008, Lindsley et al.
2006). In an analysis of 12 Wnt family members,
only Wnt-3a was found to be expressed in do-
mains of the primitive streak fated to contribute
to the paraxial and lateral plate mesoderm
(Takada et al. 1994). Two Wnt mutants have
been analyzed for skeletal mutations: vestigial
tail (Wnt-3avt/vt), which is a Wnt hypomorph,
and the loss-of-function mutant, Wnt-3aneo/neo

(Ikeya & Takada 2001). In the Wnt-3avt/vt

mutants, posterior transformations are ob-
served from the midthoracic to lumbar regions,
and anterior homeotic transformations are
observed in the sacral regions and in C2. The
Wnt-3aneo/neo mutants also display a partial C2
to C1 transformation. These mice do not form
somites caudal to somite 9, and therefore effects
on more posterior vertebrae could not be scored
(Takada et al. 1994). Both mutants display shifts
or loss of Hoxd3 and Hoxb4 expression. Thus,
Wnt-3a signaling appears to differentially
regulate distinct subsets of Hox genes.

Cdx Transcription Factors
in Hox Gene Regulation

There are three murine Cdx family members,
Cdx1, Cdx2, and Cdx4, which display discrete
and overlapping spatial and temporal expres-
sion patterns (Beck et al. 1995, Gamer &
Wright 1993, Meyer & Gruss 1993). In the
mesoderm, expression of Cdx2 and Cdx4 only
extends as far rostrally as the PSM, whereas
the expression of Cdx1 extends into the somites.
Cdx1 expression begins at 7.5 dpc in the prim-
itive streak, which coincides with the initiation
of expression of the 3′ Hox genes. At 8.5 dpc,

Cdx protein is present in all of the somites, but
as more somites begin to form and differenti-
ate, levels begin to regress posteriorly. A single
mutation of these genes reflects their staggered
expression pattern in that Cdx1 results in ante-
rior homeotic transformations in the upper cer-
vical through thoracic regions, whereas Cdx2
affects the axial identities that begin with lower
cervical vertebrae and extend through thoracic
vertebrae (Chawengsaksophak et al. 1997, Sub-
ramanian et al. 1995, van den Akker et al. 2002).
However, compound mutants have uncovered
roles for Cdx2 in the upper cervical region, and
functions for all three genes extended as far cau-
dally as the lumbosacral transition. The ante-
rior homeotic transformations in Cdx mutant
mice corresponded to posterior shifts in the ros-
tral expression domain of each of the Hox genes
analyzed, which indicates that they are Cdx tar-
gets. There is evidence that Cdx proteins act as
direct regulators of Hox gene expression. Con-
sistent with this idea, the cis-regulatory regions
of Hoxa7, Hoxb8, and Hoxc8 have been found
to contain Cdx binding motifs that are impor-
tant for regulatory activity (Charité et al. 1998,
Subramanian et al. 1995, Taylor et al. 1997).

The Fgf, RA, and Wnt signaling pathways
converge upon regulation of the Cdx genes
(Allan et al. 2001; Bel-Vialar et al. 2002; Houle
et al. 2000, 2003; Pilon et al. 2007). RA and
Wnt response elements have also been identi-
fied in the regulatory regions of Cdx genes. In
the Wnt3a hypomorph mutant vestigial tail (vt),
the caudal domain of Cdx1 expression was re-
duced, whereas Cdx2 and Cdx4 expression was
unaffected. Hence, morphogen gradients active
within the PSM and somites might be trans-
lated into a gradient of Cdx transcription factor
activity that regulates Hox genes.

THE MAINTENANCE OF HOX
GENE EXPRESSION PATTERNS

There are a variety of mechanisms that could
be employed to ensure the proper propagation
of early patterns of Hox expression in paraxial
mesoderm through later development and
into adulthood. In the hindbrain, auto- and
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cross-regulatory interactions between the Hox
genes are critical for maintaining segmen-
tal expression in rhombomeres. Epigenetic
mechanisms are also fundamentally important
for ensuring the continuation of appropriate
expression. In Drosophila, the maintenance
of Hox expression is regulated by members
of the Polycomb (PcG) and trithorax (TrxG)
groups of proteins, and these proteins play key
roles in regulating Hox expression in paraxial
mesoderm. The canonical model is that PcG
proteins are involved in perpetuating the ap-
propriate repressed state of a Hox gene, whereas
the TrxG proteins are essential for maintaining
active Hox expression domains. In mouse
mutants, both TrxG-mediated activation and
PcG-mediated repression are established be-
tween 8.5 and 9.5 dpc. Thus, they are generally
not involved in the initial development of Hox
expression domains in mesoderm (Akasaka et al.
2001, Yu et al. 1998). However, recent evidence
suggests that the PcG proteins may play roles
within regions in which Hox genes are actively
expressed and also during the earliest phases
of Hox gene expression (Boyer et al. 2006).
By modulating factors and pathways in early
development that contribute to the control of
Hox gene expression, PcG and TrxG proteins
might indirectly regulate early Hox expression
in paraxial mesoderm. Regardless of these early

roles, PcG and TrxG protein complexes are
major regulators that control vertebral identity
in later stages of development.

CONCLUSION

Hox proteins are able to transform uniform
segments into remarkably elaborate structures.
We have seen tremendous progress in clarifying
how segment-specific Hox activity is set up in
the rhombomeres. Although many of the same
upstream activators of the hindbrain Hox code
function in the paraxial mesoderm, it has been
more difficult to resolve a coherent upstream
regulatory network in this context. This is due,
in part, to the complexity and rapidity of de-
velopment in the posterior embryo as the Hox
genes are first beginning to be expressed. In
the hindbrain, Hox expression and function are
intimately tied to the formation of the rhom-
bomeres. In contrast, Hox proteins establish
segmental identity within the paraxial meso-
derm prior to the formation of overt segments,
although early patterning must later be coor-
dinated with specific somites. Thus, Hox pat-
terning of the rhombomeres and somites shares
fundamental features, such as colinearity and a
combinatorial Hox code, and possesses unique
attributes that speak to the versatility of Hox-
based patterning systems.

SUMMARY POINTS

1. The Hox family of transcription factors is expressed in an ordered pattern in segments
of the hindbrain and paraxial mesoderm, which forms a molecular code for regulating
regional diversity from similar repeated units.

2. Misexpression or mutation of Hox genes results in homeotic transformation, the conver-
sion of one structure into another.

3. The hindbrain is formed by dividing a region of the neural tube into seven segmental
compartments (rhombomeres) that control major aspects of the formation and functional
organization of neuronal, bone and connective tissue elements in head development.

4. Compartmentalization of the vertebral column occurs by the periodic addition of a bilat-
eral pair of somites to the posterior end of the elongating A-P body axis, which becomes
the foundation for the segmental organization of many features of the trunk such as the
vertebrae, nerves, and muscles.
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5. Early expression of Hox genes is initiated by the retinoic acid (RA) and fibroblast growth
factor (Fgf ) signaling pathways. Subsequent expression is modulated by auto- and cross-
regulatory interactions among the Hox genes themselves. Epigenetic programs are then
locked in by members of the Polycomb and trithorax groups.

FUTURE ISSUES

1. Identify regulatory elements that mediate the basis of the diverse phases of Hox expression
in paraxial mesoderm and somites.

2. Distinguish between direct and indirect inputs of signaling events and epigenetic mech-
anisms in the control of Hox expression.

3. Further characterize how early segmental organization is translated into a full elaboration
of the body plan and understand the later functional roles for Hox proteins in these
processes.

4. Although segmentation of the hindbrain and paraxial mesoderm is a highly conserved
process in vertebrates, we need to understand how this may vary between species.
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